中国激光, 2017, 44 (2): 0213001, 网络出版: 2017-02-22   

新型凹锥形表面增强拉曼散射光纤探针的制备

Fabrication of a Novel Concave Cone Surface-Enhanced Raman Scattering Fiber Probe
作者单位
1 上海大学特种光纤与光接入网重点实验室, 上海 200072
2 上海大学通信与信息工程学院, 上海 200072
摘要
研制了一种新型凹锥形表面增强拉曼散射(SERS)光纤探针,研究了光纤探针凹锥形结构的制备方法,分析了凹锥光纤探针形貌与腐蚀时间的关系,通过化学自组装法将金纳米颗粒固化到凹锥内表面,制成凹锥SERS光纤探针,并测试了其远程SERS检测性能。结果表明,凹锥形光纤探针具有更低的光纤拉曼光谱背底,约为同种光纤制备的锥形探针的1/3;在633 nm的激发波长下,固化金纳米颗粒的凹锥探针对于罗丹明6G(R6G)溶液的拉曼光谱远程检测浓度低至100 nmol/L。这种凹锥形结构使基底不易脱落,探针不易损坏。基于上述优点,该种凹锥形光纤探针可能在SERS远程检测领域具有潜在的应用价值。
Abstract
A novel concave cone surface-enhanced Raman scattering (SERS) fiber probe modified with the gold nanoparticles was demonstrated. We studied the preparation method of the concave cone fiber probes, analyzed the relationship between the morphology of the probe and the corrosion time, modified the gold nanoparticles onto the inner surface of the concave cone by the chemical self-assembly method, and tested the SERS detection performance of the prepared probe. Experimental results show that the concave cone fiber probe has a lower fiber Raman background, about 1/3 of the tapered probe prepared with the same fiber. With 633 nm excitation, Raman spectra of rhodamine 6G (R6G) aqueous solution of 100 nmol/L can be detected by the concave cone fiber probes modified with gold nanoparticles. Due to this concave cone structure, the metal nanoparticles are more difficult to fall off, and the probe has better damage resistance. Based on the above advantages, this type of concave cone fiber probe may have potential application value in the field of SERS remote detection.
参考文献

[1] Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166.

[2] Jeanmaire D L, vvan Duyne R P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 84(1): 1-20.

[3] Motz J T, Hunter M, Galindo L H, et al. Optical fiber probe for biomedical Raman spectroscopy[J]. Applied Optics, 2004, 43(3): 542-554.

[4] McDonagh C, Burke C S, MacCraith B D. Optical chemical sensors[J]. Chemical Reviews, 2008, 108(2): 400-422.

[5] Bowen J M, Sullivan P J, Blanche S M, et al. Optical-fiber Raman spectroscopy used for remote in situ environmental analysis: US4802761[P]. 1989-02-07.

[6] Smythe E J, Dickey M D, Bao J, et al. Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection[J]. Nano Letters, 2009, 9(3): 1132-1138.

[7] Mullen K I, Carron K T. Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes[J]. Analytical Chemistry, 1991, 63(19): 2196-2199.

[8] Zhang Y, Gu C, Schwartzberg A M, et al. Surface-enhanced Raman scattering sensor based on D-shaped fiber[J]. Applied Physics Letters, 2005, 87(12): 123105.

[9] Viets C, Hill W. Fibre-optic SERS sensors with angled tips[J]. Journal of Molecular Structure, 2001, 565: 515-518.

[10] Viets C, Hill W. Fibre-optic SERS sensors with conically etched tips[J]. Journal of Molecular Structure, 2001, 563: 163-166.

[11] Lucotti A, Zerbi G. Fiber-optic SERS sensor with optimized geometry[J]. Sensors and Actuators B, 2007, 121(2): 356-364.

[12] Demagh N E, Guessoum A, Aissat H. Chemical etching of concave cone fibre ends for core fibre alignment[J]. Measurement Science and Technology, 2005, 17(1): 119-122.

[13] Demagh N E, Guessoum A, Zegari R, et al. Self-centring technique for fibre optic microlens mounting using a concave cone-etched fibre[J]. Measurement Science and Technology, 2011, 22(11): 115302.

[14] Mayeh M, Farahi F. Tailoring Gaussian laser beam shape through controlled etching of single-mode and multimode fibers: simulation and experimental studies[J]. IEEE Sensors Journal, 2012, 12(1): 168-173.

[15] Zhang J, Chen S, Gong T, et al. Tapered fiber probe modified by Ag nanoparticles for SERS detection[J]. Plasmonics, 2015, 11(3): 743-751.

[16] Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nature Physical Science, 1973, 241(105): 20-22.

[17] Callegari A, Tonti D, Chergui M. Photochemically grown silver nanoparticles with wavelength-controlled size and shape[J]. Nano Letters, 2003, 3(11): 1565-1568.

[18] 王 兰, 黄少华, 黄祖芳, 等. 微波加热法快速制备纳米金及其 SERS 活性表征[J]. 光散射学报, 2014, 26(1): 13-18.

    Wang Lan, Huang Shaohua, Huang Zufang, et al. Rapid synthesis of gold colloids assisted by microwave irradiation and SERS activity characterized[J]. Chinese Journal of Light Scattering, 2014, 26(1): 13-18.

[19] Polwart E, Keir R L, Davidson C M, et al. Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles[J]. Applied Spectroscopy, 2000, 54(4): 522-527.

[20] Kottmann J P, Martin O J F, Smith D R, et al. Plasmon resonances of silver nanowires with a nonregular cross section[J]. Physical Review B, 2001, 64(23): 235402.

[21] 张兴坊, 张腊梅, 范群芳, 等. 金纳米球壳结构局域表面等离子体共振调谐特性[J]. 中国激光, 2011, 38(9): 0910001.

    Zhang Xingfang, Zhang Lamei, Fan Qunfang, et al. Tunable lacalied surface plasmon resonance of gold nanoshell particle[J]. Chinese J Lasers, 2011, 38(9): 0910001.

[22] Li M S, Yang C X. Optical fiber probes with laser-induced silver deposition on the core for surface-enhanced Raman scattering[C]. European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, 2009.

[23] Li J F, Huang Y F, Ding Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287): 392-395.

[24] Le Ru E C, Blackie E, Meyer M, et al. Surface enhanced Raman scattering enhancement factors: a comprehensive study[J]. Journal of Physical Chemistry C, 2007, 111(37): 13794-13803.

杜怀超, 陈振宜, 陈娜, 刘华健, 徐文杰, 张恒, 刘书朋, 王廷云. 新型凹锥形表面增强拉曼散射光纤探针的制备[J]. 中国激光, 2017, 44(2): 0213001. Du Huaichao, Chen Zhenyi, Chen Na, Liu Huajian, Xu Wenjie, Zhang Heng, Liu Shupeng, Wang Tingyun. Fabrication of a Novel Concave Cone Surface-Enhanced Raman Scattering Fiber Probe[J]. Chinese Journal of Lasers, 2017, 44(2): 0213001.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!