中国激光, 2017, 44 (7): 0703007, 网络出版: 2017-07-05   

电化学剥离制备石墨烯及其光电特性研究进展 下载: 1314次

Research Progress in Preparation of Graphene from Electrochemical Exfoliation and Its Optoelectronic Characteristics
作者单位
武汉大学物理科学与技术学院, 湖北 武汉 430072
摘要
石墨烯是一种新型的二维纳米碳材料, 具有优良的物理、化学和机械性能, 在储能器件、电子器件以及复合材料等诸多领域有广阔的应用前景。石墨烯的产业化生产一直是现在国际上材料科学研究的热点。在石墨烯的诸多制备方法中, 电化学剥离方法具有快速高效、绿色环保等特点, 有望实现产业化。首先综述了最近国内外电化学剥离法制备石墨烯和类石墨烯材料(BN和MoS2)的研究进展, 并对其反应机理进行了探讨, 然后简单介绍了石墨烯在光电子器件领域的研究现状和应用, 最后对石墨烯前景进行了展望。
Abstract
As a new kind of 2D carbon nanomaterial, graphene has wide application prospect in many fields such as energy storage device, electronic device and composites, due to its excellent physical, chemical and mechanical properties. Industrialized production of graphene is one of the researching hotspots in materials science all over the world. Among the variant methods for preparing graphene, electrochemical exfoliation owns advantages such as fast, efficient, and environment friendly, etc., and it provides a probability to realize industrialization. Firstly, this paper reviews the latest research processes in preparation of graphene and graphene-like (BN and MoS2) material from electrochemical exfoliation at home and abroad. And the reaction mechanisms are discussed. Then, the research status and applications of graphene in the field of optoelectronic device are briefly introduced. Finally, the further expectation of graphene is proposed.
参考文献

[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

[2] Bae S, Kim H K, Lee Y, et al. 30 inch roll-based production of high-quality graphene films for flexible transparent electrodes[J]. Physics, 2010, 5(8): 574-578.

[3] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun, 2008, 146(9/10): 351-355.

[4] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.

[5] Balandin A A, Ghosh S, Bao W, et al. Extremely high thermal conductivity of graphene: experimental study[J]. Eprint Arxiv, 2008, 8(3): 902-907.

[6] Zhu Y W, Murali S, Stoller M, et al. Graphene-based ultracapacitors[J]. Nano Lett, 2010, 8(10): 3498-3502.

[7] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565.

[8] Wei D, Grande L, Chundi V, et al. Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices[J]. Chem Commun, 2012, 48(9): 1239-1241.

[9] Reina A, Jia X, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Lett, 2009, 9(1): 30-35.

[10] Zhang Y, Cao B, Zhang B, et al. The production of nitrogen-doped graphene from mixed amine plus ethanol flames[J]. Thin Solid Films, 2012, 520(23): 6850-6855.

[11] Liu N, Luo F, Wu X H, et al. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite[J]. Adv Funct Mater, 2008, 18(10): 1518-1525.

[12] Stankovich S, Dikin D A, Dommett G H, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100): 282-286.

[13] Kuilla T, Bhadra S, Yao D, et al. Recent advances in graphene based polymer composites[J]. Prog Polym Sci, 2010, 35(11): 1350-1375.

[14] Low C T J, Walsh F C, Chakrabarti M H, et al. Electrochemical approaches to the production of graphene flakes and their potential applications[J]. Carbon, 2013, 54(4): 1-21.

[15] Liu J, Poh C K, Zhan D, et al. Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod[J]. Nano Energy, 2013, 2(3): 377-386.

[16] Parvez K, Wu Z S, Li R, et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts[J]. J Am Chem Soc, 2014, 136(16): 6083-6091.

[17] Parvez K, Li R, Puniredd S R, et al. Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics[J]. Acs Nano, 2013, 7(4): 3598-3606.

[18] Su C Y, Lu A Y, Xu Y, et al. High-quality thin graphene films from fast electrochemical exfoliation[J]. Acs Nano, 2011, 5(3): 2332-2339.

[19] Guo H L, Wang X F, Qian Q Y, et al. A green approach to the synthesis of graphene nanosheets[J]. Acs Nano, 2009, 3(9): 2653-2659.

[20] Zhang W, Zeng Y, Xiao N, et al. One-step electrochemical preparation of graphene-based heterostructures for Li storage[J]. J Mater Chem, 2012, 22(17): 8455-8461.

[21] Wang G, Wang B, Park J, et al. Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation[J]. Carbon, 2009, 47(14): 3242-3246.

[22] Kuila T, Khanra P, Kim N H, et al. One-step electrochemical synthesis of 6-amino-4-hydroxy-2-napthalene-sulfonic acid functionalized graphene for green energy storage electrode materials[J]. Nanotechnology, 2013, 24(36):365706.

[23] Li P, Bae S H, Zan Q Y, et al. One-step process for the exfoliation and surface modification of graphene by electrochemical method[J]. Advanced Materials Research, 2010, 123-125: 743-746.

[24] Alanyaliogˇlu M, Segura J J, Oró-Solè J, et al. The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes[J]. Carbon, 2012, 50(1): 142-152.

[25] Wan H D, Chutia A, Majid Z A, et al. Electrochemical synthesis and characterization of stable colloidal suspension of graphene using two-electrode cell system[C]. Scientific Conference of Microscopy Society Malaysia, 2015, 46(5696): 5155-5157.

[26] Zhang K, Mao L, Zhang L L, et al. Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes[J]. J Mater Chem, 2011, 21(20): 7302-7307.

[27] Lu X, Zhao C. Controlled electrochemical intercalation, exfoliation and in situ nitrogen doping of graphite in nitrate-based protic ionic liquids[J]. Phys Chem Chem Phys, 2013, 15(46): 20005-20009.

[28] Hamra A A B, Lim H N, Chee W K, et al. Electro-exfoliating graphene from graphite for direct fabrication of supercapacitor[J]. Appl Surf Sci, 2015, 360: 213-223.

[29] Song Y, Xu J L, Liu X X. Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode[J]. J Power Sources, 2014, 249(1): 48-58.

[30] Kumar M K P, Srivastava C. Synthesis of graphene from a used battery electrode[J]. JOM, 2016, 68(1): 374-383.

[31] 钟轶良. 电化学剥离制备石墨烯及其石墨烯用作燃料电池催化剂载体的研究[D]. 广州: 华南理工大学, 2013.

    Zhong Yiliang. Investigation for the preparation of graphene with electrochemical exfoliation and the application of graphene as support for fuel cell catalyst[D]. Guangzhou: South China University of Technology, 2013.

[32] Zeng F, Sun Z, Sang X, et al. In situ one-step electrochemical preparation of graphene oxide nanosheet-modified electrodes for biosensors[J]. Chemsuschem, 2011, 4(11): 1587-1591.

[33] 王俊中, 王俊英, 郭全贵, 等. 一种由石墨原矿电解法制备石墨烯的方法: CN104264179A[P]. 2015-01-07.

[34] Xia Z Y, Giambastiani G, Christodoulou C, et al. Synergic exfoliation of graphene with organic molecules and inorganic ions for the electrochemical production of flexible electrodes[J]. Chempluschem, 2014, 79(3): 439-446.

[35] Li C, Xu Y T, Zhao B, et al. Flexible graphene electrothermal films made from electrochemically exfoliated graphite[J]. J Mater Sci, 2016, 51(2): 1043-1051.

[36] Lu J, Yang J X, Wang J, et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids[J]. Acs Nano, 2009, 3(8): 2367-2375.

[37] Rao K S, Senthilnathan J, Liu Y F, et al. Role of peroxide ions in formation of graphene nanosheets by electrochemical exfoliation of graphite[J]. Sci Rep, 2014, 4(6174): 1032-1035.

[38] Chang L C, Hsieh Y C, Chen Y M, et al. Fabrication of graphene by electrochemical exfoliation in alkaline electrolytes[J]. Ecs Transactions, 2013, 58(24): 33-38.

[39] Munuera J M, Paredes J I, Villar-Rodil S, et al. High quality, low oxygen content and biocompatible graphene nanosheets obtained by anodic exfoliation of different graphite types[J]. Carbon, 2015, 94: 729-739.

[40] Wang J, Manga K K, Bao Q, et al. High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte[J]. J Am Chem Soc, 2011, 133(23): 8888-8891.

[41] Zhou M, Tang J, Cheng Q, et al. Few-layer graphene obtained by electrochemical exfoliation of graphite cathode[J]. Chem Phys Lett, 2013, 572(21): 61-65.

[42] Yang Y, Lu F, Zhou Z, et al. Electrochemically cathodic exfoliation of graphene sheets in room temperature ionic liquids N-butyl, methylpyrrolidinium bis (trifluoromethylsulfonyl) imide and their electrochemical properties[J]. Electrochim Acta, 2013, 113(4): 9-16.

[43] Dang V T, Li L J, Chu C W, et al. Plasma-assisted electrochemical exfoliation of graphite for rapid production of graphene sheets[J]. Rsc Adv, 2014, 4(14): 6946-6949.

[44] Zhong Y L, Swager T M. Enhanced electrochemical expansion of graphite for in situ electrochemical functionalization[J]. J Am Chem Soc, 2012, 134(43): 17896-17899.

[45] Huang H, Xia Y, Tao X, et al. Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation-expansion-microexplosion mechanism[J]. J Mater Chem, 2012, 22(21): 10452-10456.

[46] Abdelkader A M, Kinloch I A, Dryfe R A W. Continuous electrochemical exfoliation of micrometer-sized graphene using synergistic ion intercalations and organic solvents[J]. Acs Appl Mater Inter, 2014, 6(3): 1632-1639.

[47] Liu N, Kim P, Kim J H, et al. Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation[J]. Acs Nano, 2014, 8(7): 6902-6910.

[48] Zeng Z, Sun T, Zhu J, et al. An effective method for the fabrication of few-layer-thick inorganic nanosheets[J]. Angew Chem, 2012, 51(36): 9052-9056.

[49] Gong Y, Ping Y, Li D, et al. Preparation of high-quality graphene via electrochemical exfoliation & spark plasma sintering and its applications[J]. Appl Surf Sci, 2017, 397: 213-219.

[50] Yang K, He J, Su Z, et al. Inter-tube bonding, graphene formation and anisotropic transport properties in spark plasma sintered multi-wall carbon nanotube arrays[J]. Carbon, 2010, 48(3): 756-762.

[51] Nieto A, Lahiri D, Agarwal A. Synthesis and properties of bulk graphene nanoplatelets consolidated by spark plasma sintering[J]. Carbon, 2012, 50(11): 4068-4077.

[52] Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method[J]. J Mater Sci, 2006, 41(3): 763-777.

[53] Chen H, Müller M B, Gilmore K J, et al. Mechanically strong, electrically conductive, and biocompatible graphene paper[J]. Adv Mater, 2008, 20(18): 3557-3561.

[54] Lotya M, King P J, Khan U, et al. High-concentration, surfactant-stabilized graphene dispersions[J]. Acs Nano, 2010, 4(6): 3155-3162.

[55] Song W L, Fan L Z, Cao M S, et al. Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding[J]. J Mater Chem C, 2014, 2(25): 5057-5064.

[56] Wu L, Li W, Li P, et al. Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite[J]. Small, 2014, 10(7): 1421-1429.

[57] Becerril H A, Mao J, Liu Z, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors[J]. Acs Nano, 2008, 2(3): 463-470.

[58] Bae S, Kim H, Lee Y B, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nat Nanotechnol, 2010, 5(8): 574-578.

[59] Wu J, Agrawal M, Becerril H A, et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes[J]. Acs Nano, 2010, 4(1): 43-48.

[60] Han T H, Lee Y, Choi M R, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode[J]. Nat Photonics, 2012, 6(2): 105-110.

[61] 孙秀英, 吴晓晓, 李福山. 基于石墨烯的柔性黄光有机发光二极管制备与性能[J]. 电子元件与材料, 2016(1): 29-32.

    Sun Xiuying, Wu Xiaoxiao, Li Fushan. Fabrication and properties of flexible yellow organic light-emitting diodes[J]. Electronic Components and Materials, 2016(1): 29-32.

[62] Yang N, Zhai J, Wang D, et al. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells[J]. Acs Nano, 2010, 4(2): 887-894.

[63] Liu Y, Cheng Y, Shu W, et al. Formation and photovoltaic performance of few-layered graphene-decorated TiO2 nanocrystals used in dye-sensitized solar cells[J]. Nanoscale, 2014, 6(12): 6755-6762.

[64] Qin Y, Cheng Y, Jiang L, et al. Top-down strategy toward versatile graphene quantum dots for organic/inorganic hybrid solar cells[J]. Acs Sustain Chem Eng, 2015, 3(4): 637-644.

[65] Li X, Wang X, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors[J]. Science, 2008, 319(5867): 1229-1232.

[66] Mccann E. Asymmetry gap in the electronic band structure of bilayer graphene[J]. Phys Rev B, 2006, 74(16): 161403.

[67] Wu W, Liu Z, Jauregui L A, et al. Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing[J]. Sensor Actuators B: Chemical, 2010, 150(1): 296-300.

[68] Han S J, Garcia A V, Oida S, et al. Graphene radio frequency receiver integrated circuit[J]. Nat Commun, 2014, 5(2): 3086.

[69] Xia F N, Mueller T, Lin Y M, et al. Ultrafast graphene photodetector[J]. Nat Nanotechnol, 2009, 4(12): 839-843.

[70] Song Y, Li X, Mackin C, et al. Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells[J]. Nano Lett, 2015, 15(3): 2104-2110.

[71] Zhu M, Zhang L, Li X, et al. TiO2 enhanced ultraviolet detection based on graphene/Si Schottky diode[J]. J Mater Chem A, 2015, 3(15): 8133-8138.

[72] Li X, Zhu M, Du M, et al. High detectivity graphene-silicon heterojunction photodetector[J]. Small, 2015, 12(5): 595-601.

平蕴杰, 龚佑宁, 潘春旭. 电化学剥离制备石墨烯及其光电特性研究进展[J]. 中国激光, 2017, 44(7): 0703007. Ping Yunjie, Gong Youning, Pan Chunxu. Research Progress in Preparation of Graphene from Electrochemical Exfoliation and Its Optoelectronic Characteristics[J]. Chinese Journal of Lasers, 2017, 44(7): 0703007.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!