Photonics Research, 2018, 6 (8): 08000805, Published Online: Aug. 1, 2018  

Intermodal four-wave mixing in silicon waveguides Download: 525次

Author Affiliations
1 Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy
2 SM Optics s.r.l., Research Programs, Via John Fitzgerald Kennedy 2, 20871 Vimercate, Italy
3 Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
4 Centre for Materials and Microsystems, Fondazione Bruno Kessler, 38123 Trento, Italy
Copy Citation Text

Stefano Signorini, Mattia Mancinelli, Massimo Borghi, Martino Bernard, Mher Ghulinyan, Georg Pucker, Lorenzo Pavesi. Intermodal four-wave mixing in silicon waveguides[J]. Photonics Research, 2018, 6(8): 08000805.

References

[1] D. Dai, J. E. Bowers. Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects. Nanophotonics, 2014, 3: 283-311.

[2] S. Berdagu, P. Facq. Mode division multiplexing in optical fibers. Appl. Opt., 1982, 21: 1950-1955.

[3] BagheriS.GreenW. M., “Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2009).

[4] L. W. Luo, N. Ophir, C. P. Chen, L. Gabrielli, C. B. Poitras, K. Bergmen, M. Lipson. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun., 2014, 5: 3069.

[5] Y. Ding, J. Xu, H. Ou, C. Peuchere. Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide. Opt. Express, 2014, 22: 127-135.

[6] MaM.ChenL., “On-chip silicon mode-selective broadband wavelength conversion based on cross-phase modulation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2016), paper STh3E.3.

[7] Y. Qiu, X. Li, M. Luo, D. Chen, J. Wang, J. Xu, Q. Yang, S. Yu. Mode-selective wavelength conversion of OFDM-QPSK signals in a multimode silicon waveguide. Opt. Express, 2017, 25: 4493-4499.

[8] BoydR. W., Nonlinear Optics (Academic, 2003).

[9] M. Borghi, C. Castellan, S. Signorini, A. Trenti, L. Pavesi. Nonlinear silicon photonics. J. Opt., 2017, 19: 093002.

[10] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta. Broad-band optical parametric gain on a silicon photonic chip. Nature, 2006, 441: 960-963.

[11] K. Guo, L. Lin, J. Christensen, E. Christensen, X. Shi, Y. Ding, K. Rottwitt, H. Ou. Broadband wavelength conversion in a silicon vertical-dual-slot waveguide. Opt. Express, 2017, 25: 32964-32971.

[12] R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, R. Lingle. Experimental investigation of inter-modal four-wave mixing in few-mode fibers. IEEE Photon. Technol. Lett., 2013, 25: 539-542.

[13] H. Pourbeyram, E. Nazemosadat, A. Mafi. Detailed investigation of intermodal four-wave mixing in SMF-28: blue-red generation from green. Opt. Express, 2015, 23: 14487-14500.

[14] W. Pan, Q. Jin, X. Li, S. Gao. All-optical wavelength conversion for mode-division multiplexing signals using four-wave mixing in a dual-mode fiber. J. Opt. Soc. Am. B, 2015, 32: 2417-2424.

[15] S. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. Richardson, P. Horak, F. Parmigiani. Inter-modal four-wave mixing study in a two-mode fiber. Opt. Express, 2016, 24: 30338-30349.

[16] J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, G. Zhou, Q. Wu, B. Yan, K. Wang, C. Yu, H. Tam, P. Wai. Demonstration of intermodal four-wave mixing by femtosecond pulses centered at 1550 nm in an air-silica photonic crystal fiber. J. Lightwave Technol., 2017, 35: 2385-2390.

[17] R. Dupiol, A. Bendahmane, K. Krupa, J. Fatome, A. Tonello, M. Fabert, V. Couderc, S. Wabnitz, G. Millot. Intermodal modulational instability in graded-index multimode optical fibers. Opt. Lett., 2017, 42: 3419-3422.

[18] ParmigianiF.JungY.FriisS. M. M.KangQ.BeglerisI.HorakP.RottwittK.PetropoulosP.RichardsonD. J., “Study of inter-modal four wave mixing in two few-mode fibres with different phase matching properties,” in Proceedings of 42nd European Conference on Optical Communication (2016).

[19] R. H. Stolen, J. E. Bjorkholm, A. Ashkin. Phase-matched three-wave mixing in silica fiber optical waveguides. Appl. Phys. Lett., 1974, 24: 308-310.

[20] J. Cheng, M. E. Pedersen, K. Charan, K. Wang, C. Xu, L. Grner-Nielsen, D. Jakobsen. Intermodal four-wave mixing in a higher-order-mode fiber. Appl. Phys. Lett., 2012, 101: 161106.

[21] H. Tu, Z. Jiang, D. L. Marks, S. A. Boppart. Intermodal four-wave mixing from femtosecond pulse-pumped photonic crystal fiber. Appl. Phys. Lett., 2009, 94: 101109.

[22] SignoriniS.MancinelliM.BernardM.GhulinyanM.PuckerG.PavesiL., “Broad wavelength generation and conversion with multi modal four wave mixing in silicon waveguides,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2017), pp. 5960.

[23] E. A. Kittlaus, N. T. Otterstrom, P. T. Rakich. On-chip inter-modal Brillouin scattering. Nat. Commun., 2017, 8: 15819.

[24] CrowderJ. G.SmithS. D.VassA.KeddieJ., “Infrared methods for gas detection,” in Mid-Infrared Semiconductor Optoelectronics (Springer, 2006), pp. 595613.

[25] M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, L. Pavesi. Mid-infrared coincidence measurements on twin photons at room temperature. Nat. Commun., 2017, 8: 15184.

[26] B. Kuyken, P. Verheyen, P. Tannouri, X. Liu, J. Van Campenhout, R. Baets, W. Green, G. Roelkens. Generation of 3.6  µm radiation and telecom-band amplification by four-wave mixing in a silicon waveguide with normal group velocity dispersion. Opt. Lett., 2014, 39: 1349-1352.

[27] S. K. Liao, H. L. Yong, C. Liu, G. L. Shentu, D. D. Li, J. Lin, H. Dai, S. Q. Zhao, B. Li, J. Y. Guan, W. Chen, Y. H. Gong, Y. Li, Z. H. Lin, G. S. Pan, J. S. Pelc, M. M. Fejer, W. Z. Zhang, W. Y. Liu, J. Yin, J. G. Ren, X. B. Wang, Q. Zhang, C. Z. Peng, J. W. Pan. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photonics, 2017, 11: 509-513.

[28] A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, A. L. Gaeta. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Express, 2006, 14: 4357-4362.

[29] C. Lin, M. A. Bsch. Large-Stokes-shift stimulated four-photon mixing in optical fibers. Appl. Phys. Lett., 1981, 38: 479-481.

[30] Y. Xiao, R. J. Essiambre, M. Desgroseilliers, A. M. Tulino, R. Ryf, S. Mumtaz, G. P. Agrawal. Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers. Opt. Express, 2014, 22: 32039-32059.

[31] X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, W. M. Green. Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation. Nat. Photonics, 2012, 6: 667-671.

[32] Q. Lin, J. Zhang, P. M. Fauchet, G. P. Agrawal. Ultrabroadband parametric generation and wavelength conversion in silicon waveguides. Opt. Express, 2006, 14: 4786-4799.

[33] M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta. Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides. Opt. Express, 2007, 15: 12949-12958.

[34] ChangW. S., Fundamentals of Guided-Wave Optoelectronic Devices (Cambridge University, 2009).

[35] S. Signorini, M. Borghi, M. Mancinelli, M. Bernard, M. Ghulinyan, G. Pucker, L. Pavesi. Oblique beams interference for mode selection in multimode silicon waveguides. J. Appl. Phys., 2017, 122: 113106.

[36] AgrawalG. P., Nonlinear Fiber Optics (Academic, 2013).

[37] R. M. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I.-W. Hsieh, E. Dulkeith, W. M. J. Green, Y. A. Vlasov. Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires. Adv. Opt. Photon., 2009, 1: 162-235.

[38]

The conversion efficiency is calculated as the ratio between the on-chip idler peak power and the on-chip signal power, both evaluated at the end of the waveguide. The input on-chip signal power was about 47 µW (= −13.3 dB) at 1640 nm on the second-order mode. At the end of the waveguide, considering 4.6  dB·cm1 of propagation losses and 1.5 cm waveguide length, the signal power on the second-order mode is 20.2  dBm. The off-chip generated average idler power is about 74.2  dBm, as shown in Fig. 8(a). Considering the coupling losses for the first-order mode, 5.3 dB, the on-chip average idler power is 68.9  dBm. Considering that the pump laser has 10 MHz repetition rate and 40 ps pulse width, the on-chip idler peak power, at the end of the waveguide, is 34.9  dBm. Therefore, the conversion between the signal power, 20.2  dBm, and the idler peak power, 34.9  dBm, is 14.7  dB.

Stefano Signorini, Mattia Mancinelli, Massimo Borghi, Martino Bernard, Mher Ghulinyan, Georg Pucker, Lorenzo Pavesi. Intermodal four-wave mixing in silicon waveguides[J]. Photonics Research, 2018, 6(8): 08000805.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!