强激光与粒子束, 2013, 25 (5): 1091, 网络出版: 2013-04-08   

探测大气湍流的光强闪烁激光雷达

Turbulent scintillation lidar for acquiring atmospheric turbulence information
作者单位
1 中国科学院 安徽光学精密机械研究所, 大气成分与光学重点实验室, 合肥 230031
2 中国科学院大学, 北京 100039
摘要
基于残余光强闪烁理论, 分析了与大气湍流探测有关的激光雷达各项硬件参数并获得参数的优化范围, 据此研制了一台用于大气湍流探测的光强闪烁激光雷达。背景基线、线性特征等性能测试表明, 激光雷达各硬件工作正常, 数据获取可靠。实验测量中获得了水平方向上闪烁指数和大气折射率结构常数随探测距离和时间的变化趋势, 其中闪烁指数在450~2000 m探测距离范围内由0.001逐渐增大至0.350左右; 大气折射率结构常数基本保持水平均匀性, 在1.0×10-16~1.0×10-15m-2/3范围之内; 大气折射率结构常数在10:00~21:00时间内大致呈现上午上升、下午下降、晚上上升的变化趋势, 具有较明显的日变化特征。实验结果与理论和常规测量较为相符, 表明光强闪烁激光雷达能够获取大气湍流的探测距离变化和日变化特征信息。
Abstract
Based on residual turbulent scintillation(RTS) theory, many lidar component parameters were analyzed, and the ones related to atmospheric turbulence detecting were obtained and optimized. An RTS lidar was then developed for acquiring atmospheric turbulence information. It is suggested that the lidar works normally and the data are reliable according to some performance tests of baseline, linearity characteristic and so on. The relationships of scintillation index and atmospheric refractive index structure constant with propagation distance and time in horizontal direction were experimentally obtained. The scintillation index increases from 0.001 to 0.35 with the propagation distance changing from 450 m to 2000 m, and the refractive index structure constant is between 1.0×10-16 and 1.0×10-15 m-2/3 and basically maintains homogenous in that distance range. From 10:00 am to 09:00 pm, the refractive index structure constant rises in the morning, falls in the afternoon and then rises in the evening approximately. On the whole, the variations of scintillation index and refractive index structure constant with propagation distance and time are similar to the theoretical results and practical measurements. The results suggest that the RTS lidar has the capability of extracting atmospheric turbulence information that varies with propagation distance and time in the lidar echo signal.
参考文献

[1] 饶瑞中.光在湍流大气中的传播[M].合肥: 安徽科学技术出版社, 2005:4-5.(Rao Ruizhong. Light propagation in the turbulent atmosphere. Hefei: Anhui Science and Technology Press, 2005:4-5)

[2] Neyman C R, Stribling B E. Scintillation detection and ranging (SCIDAR) at the air force Maui optical station[C]//Proc of SPIE. 1999, 3763:259-267.

[3] Kornilov V, Tokovinin A A, Vozyakova O, et al. MASS: a monitor of the vertical turbulence distribution[C]//Proc of SPIE. 2003, 4839:837-845.

[4] Wilson R W. SLODAR: measuring optical turbulence altitude with a Shack-Hartmann wavefront sensor[J]. Mon Not R Astron Soc, 2002, 337(1):103-108.

[5] Hill F, Radick R, Collados M. Deriving C2n from a scintillometer array[R]. 2003.

[6] Belen’kii M S, Roberts D W, Stewart J M, et al. Experimental validation of the differential image motion lidar concept[J]. Opt Lett, 2000, 25(8):518-520.

[7] 侯再红, 吴毅, 张守川, 等.湍流廓线激光雷达的研制[J]. 强激光与粒子束, 2006, 18(10):1602-1604.(Hou Zaihong, Wu Yi, Zhang Shouchuan, et al. Development of turbulence profile lidar. High Power Laser and Particle Beams, 2006, 18(10):1602-1604)

[8] Lawrence J, D Jr, McCormick M P, et al. Laser backscatter correlation with turbulent regions of the atmosphere[J]. Appl Phys Lett, 1968, 12(3):72-73.

[9] 孙景群. 激光大气探测[M]. 北京:科学出版社.1986:173-179.(Sun Jingqun. Atmosphere detection by laser. Beijing: Science Press, 1986:173-179)

[10] Belen’kii M S. Effect of residual turbulent scintillation and a remote-sensing technique for simultaneous determination of turbulence and scattering parameters of the atmosphere[J]. J Opt Soc Am A, 1994, 11(3):1150-1158.

[11] Gimmestad G G, Belen’kii M S. Prospects for laser remote sensing of C2n[C]//Proc of SPIE. 1995, 2471:482-486.

[12] Ni Zhibo, Huang Honghua, Mei Haiping, et al. Extracting turbulence information from echo signal of micro-pulse lidar[C]//Proc of SPIE. 2009:73822L.

[13] 崔朝龙, 黄宏华, 梅海平, 等. 利用米散射激光雷达获取湍流信息的方法研究[J].大气与环境光学学报, 2011, 6(2):89-94.(Cui Chaolong, Huang Honghua, Mei Haiping, et al. Study on acquiring turbulence information using Mie scattering lidar. Journal of Atmospheric and Environmental Optics, 2011, 6(2):89-94)

[14] Banakh V A, Mironov V L. Lidar in a turbulent atmosphere[M]. Norwood: Artech House, 1987.

[15] Andrews L C, Phillips R L. Laser beam propagation through random media[M]. Bellingham: SPIE Press, 2005:534-547.

[16] 谭锟. 影响激光雷达测量精度的因素探讨[J]. 光电子技术与信息, 2005, 18(5):11-15.(Tan Kun. Discussion of accuracy of lidar measurement. Optoelectronic Technology and Information, 2005, 18(5):11-15)

[17] 刘东. 偏振-米激光雷达的研制和大气边界层的激光雷达探测[D]. 北京: 中国科学院研究生院, 2005.(Liu Dong. Development of polarization-Mie lidar and lidar observation of atmosphere boundary layer. Beijing: Graduate University of Chinese Academy of Sciences, 2005)

[18] 张寅超, 胡欢陵, 谭锟, 等. AML-1车载式大气污染监测激光雷达样机研制[J]. 光学学报, 2004, 24(8):1025-1031.(Zhang Yinchao, Hu Huanling, Tan Kun, et al. Development of a mobile lidar system for air pollution monitoring. Acta Optica Sinica, 2004, 24(8):1025-1031)

[19] 马晓珊, 朱文越, 饶瑞中.测量大气折射率结构常数的大口径激光闪烁仪[J].中国激光, 2008, 35(6):898-902.(Ma Xiaoshan, Zhu Wenyue, Rao Ruizhong. Large aperture laser scintillometer for measuring the refractive index structure constant of atmospheric turbulence. Chinese Journal of Lasers, 2008, 35(6):898-902)

崔朝龙, 黄宏华, 梅海平, 朱文越, 饶瑞中. 探测大气湍流的光强闪烁激光雷达[J]. 强激光与粒子束, 2013, 25(5): 1091. Cui Chaolong, Huang Honghua, Mei Haiping, Zhu Wenyue, Rao Ruizhong. Turbulent scintillation lidar for acquiring atmospheric turbulence information[J]. High Power Laser and Particle Beams, 2013, 25(5): 1091.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!