光学与光电技术, 2023, 21 (6): 0028, 网络出版: 2024-02-29  

一种从离散法线图重建高度图的方法

A Method for Reconstructing a Height Map From a Discrete Normal Map
作者单位
云南师范大学物理与电子信息学院, 云南 昆明 650500
摘要
阴影形状、偏转测量和光度立体法等多种手段都能得到场景的法线场, 需要进一步重建才能获得高度场, 因此由法线场重建场景的深度信息值得研究。提出一种由离散法向量恢复高度场函数的方法。首先, 基于离散几何的原理, 逐行估计场景的行高度值; 然后计算少量列高度; 最后根据列高度值, 逐行调整各行的高度平均值, 得出整个场景的高度分布, 其中在估计行高度值与列高度值的过程都运用了最小二乘法。该方法由于减少了优化的数据量, 不需要大型的矩阵运算和运算内存, 并且对于物体表面连续并且光滑的曲面会有较好的效果。实验表明, 该方法对曲面连续突变较少的场景的深度恢复较好, 但对于突变较多的场景, 所恢复出的高度会有横条纹。
Abstract
The normal field of the scene can be obtained by various methods such as shadow shape, deflection measurement and photometric stereo. The height field function obtained from the normal field plays an important role in 3D reconstruction methods such as shadow shape and photometric stereo, so the depth information of the scene reconstructed from the normal field is worth studying. A method to recover height field function from discrete normal vector is proposed in this paper. Firstly, based on the principle of discrete geometry, the row height value of the scene is estimated line by line. Then, a small number of column heights are calculated. Finally, according to the column height value, the average height of each row is adjusted row by row to obtain the height distribution of the whole scene. The least square method is used in the process of estimating the row height value and column height value. This method reduces the amount of optimization data. It does not need large matrix operations and operation memory, and has a good effect on the surface of the object, which is continuous and smooth. Experimental results show that the depth recovery of the scene with few continuous surface mutations is better, but for the scene with many mutations, the recovered height will have horizontal stripes.
参考文献

[1] 王林溪, 曹益平. 基于计算莫尔轮廓术的实时三维差异性特征检测[J]. 光学与光电技术, 2023, 21(1): 13-20. WANG Lin-xi, CAO Yi-ping. Real-time 3D difference feature detection based on computer-generated Moire profilometry[J]. Optics & Optoelectronic Technology, 2023, 21(1): 13-20.

[2] Demol M, Verbeeck H, Gielen B, et al. Estimating forest above‐ground biomass with terrestrial laser scanning: Current status and future directions[J]. Methods in Ecology and Evolution, 2022, 13(8): 1628-1639.

[3] Calders K, Adams J, Armston J, et al. Terrestrial laser scanning in forest ecology: Expanding the horizon[J]. Remote Sensing of Environment, 2020, 251: 112102.

[4] 杨明, 李宏宁, 杨鑫, 等. 基于结构光的油画表面三维形貌无损检测[J]. 光学与光电技术, 2022, 20(6): 97-102.YANG Ming, LI Hongning, YANG Xin, et al. Nondestructive detection of three-dimensional topography of oil painting surface based on structured light[J]. Optical and Optoelectronic Technology, 2022, 20(6): 97-102.

[5] Forbes A, de Oliveira M, Dennis M R. Structured light[J]. Nature Photonics, 2021, 15(4): 253-262.

[6] Surti S, Karp J S. Update on latest advances in time-of-flight PET[J]. Physica Medica, 2020, 80: 251-258.

[7] Schaart D R. Physics and technology of time-of-flight PET detectors[J]. Physics in Medicine & Biology, 2021, 66(9): 09TR01.

[8] Zhang R, Tsai P S, Cryer J E, et al. Shape-from-shading: A survey[J]. IEEE transactions on pattern analysis and machine intelligence, 1999, 21(8): 690-706.

[9] Cao Z, Wang Y, Zheng W, et al. The algorithm of stereo vision and shape from shading based on endoscope imaging[J]. Biomedical Signal Processing and Control, 2022, 76: 103658.

[10] Huang L, Idir M, Zuo C, et al. Review of phase measuring deflectometry[J]. Optics and Lasers in Engineering, 2018, 107: 247-257.

[11] Ackermann J, Goesele M. A survey of photometric stereo techniques[J]. Foundations and Trends? in Computer Graphics and Vision, 2015, 9(3-4): 149-254.

[12] Chen G, Han K, Shi B, et al. Self-calibrating deep photometric stereo networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 8739-8747.

[13] Smith G D J, Bors A G. Height estimation from vector fields of surface normals[C]//2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No. 02TH8628). IEEE, 2002, 2: 1031-1034.

[14] 虞鸿, 吴哲夫, 刘恺, 等. 一种从物体表面法线估计高度信息的算法[J]. 计算机科学, 2013, 40(5): 4. YU Hong, WU Zhe-fu, LIU Kai, et al. Height Estimation Algorithm Based on Surface Normal[J]. Computer Science, 2013, 40(5): 4.

[15] Calderon F, Ruiz U, Rivera M. Surface-normal estimation with neighborhood reorganization for 3D reconstruction[C]//Iberoamerican Congress on Pattern Recognition. Springer, Berlin, Heidelberg, 2007: 321-330.

[16] Xie W, Wang M, Wei M, et al. Surface reconstruction from normals: A robust dgp-based discontinuity preservation approach[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5328-5336.

[17] Yamaura Y, Nanya T, Imoto H, et al. Shape reconstruction from a normal map in terms of uniform bi-quadratic B-spline surfaces[J]. Computer-Aided Design, 2015, 63: 129-140.

[18] Harker M, O'Leary P. Least squares surface reconstruction from measured gradient fields[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2008: 1-7.

杨鑫, 李宏宁, 陈豪, 赵海, 高雅孺. 一种从离散法线图重建高度图的方法[J]. 光学与光电技术, 2023, 21(6): 0028. YANG Xin, LI Hong-ning, CHEN Hao, ZHAO Hai, GAO Ya-ru. A Method for Reconstructing a Height Map From a Discrete Normal Map[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2023, 21(6): 0028.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!