光电子快报(英文版), 2023, 19 (3): 144, Published Online: Mar. 18, 2023  

Conversion efficiency of strained wurtzite InxGa1-xN/ZnSnN2 core/shell quantum dot solar cells under external electric field

Author Affiliations
College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
Abstract
In this study, the conversion efficiency (CE), open-circuit voltage (VOC) and short-circuit current density (JSC) of wurtzite InxGa1-xN/ZnSnN2 core/shell quantum dot (QD) solar cells are studied by using the detailed balance model. The effects of strain and external electric field have been considered. The results show that with the increase of the core size, the VOC increases, while the JSC and CE decrease. With the increase of shell size or In content, the VOC decreases, while the JSC and CE increase. In addition, our calculations show that the band gap of QD increases due to strain, which leads to an increase of the VOC, but decreases of the CE and JSC. By contrast, the situation is opposite under the effect of external electric field.
References

[1] SEROKA N S, TAZIWA R, KHOTSENG L. Solar energy materials-evolution and niche applications: a literature review[J]. Materials, 2022, 15(15): 5338.

[2] BAGHER A M, VAHID M M A, MOHSEN M. Types of solar cells and application[J]. American journal of optics and photonics, 2015, 3(5): 94-113.

[3] XING M B, WEI Y Y, WANG R X, et al. Study on the performance of ZMO/PbS quantum dot heterojunction solar cells[J]. Solar energy, 2021, 213: 53-58.

[4] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of applied physics, 1961, 32(3): 510-519.

[5] JIANG C Y, JING L, HUANG X, et al. Enhanced solar cell conversion efficiency of InGaN/GaN multiple quantum wells by piezo-phototronic effect[J]. ACS nano, 2017, 11(9): 9405-9412.

[6] LU X Y, SUN Y J, HU W P. The external electric field effect on the charge transport performance of organic semiconductors: a theoretical investigation[J]. Journal of materials chemistry A, 2021, 9(37): 21044-21050.

[7] JIA Y F, ZHANG Y, WEI X, et al. GaTe/CdS heterostructure with tunable electronic properties via external electric field and biaxial strain[J]. Journal of alloys and compounds, 2020, 832: 154965.

[8] LI S J, ZHOU M, WANG X H, et al. HfSe2 monolayer stability tuning by strain and charge doping[J]. Physics letters A, 2020, 384(23): 126534.

[9] WU Q Y, CAO L M, ANG Y S, et al. Semiconductor-to-metal transition in bilayer MoSi2N4 and WSi2N4 with strain and electric field[J]. Applied physics letters, 2021, 118(11): 113102.

[10] OLSEN V S, OVERSJOEN V, GOGOVA D, et al. ZnSnN2 in real space and k-space: lattice constants, dislocation density, and optical band gap[J]. Advanced optical materials, 2021, 9(16): 2100015.

[11] KHAN I S, HEINSELMAN K N, ZAKUTAYEV A. Review of ZnSnN2 semiconductor material[J]. Journal of physics: energy, 2020, 2(3): 032007.

[12] YILDIRIM H. Effects of built-in electric field on donor binding energy in InGaN/ZnSnN2 quantum well structures[J]. Physics letters A, 2019, 383(12): 1324-1329.

[13] MINIMALA N S, JOHN P A, YOO C K. Magnetic field induced non-linear optical properties in a strained wurtzite GaN/AlxGa1-xN quantum dot: effect of internal fields[J]. Superlattices and microstructures, 2013, 60: 148-159.

[14] HA S H, BAN S L. Binding energies of excitons in a strained wurtzite GaN/AlGaN quantum well influenced by screening and hydrostatic pressure[J]. Journal of physics: condensed matter, 2008, 20(8): 085218.

[15] EL-AOUAMI A, BIKEROUIN M, EL-YADRI M, et al. Internal polarization electric field effects on the efficiency of InN/InxGa1-xN multiple quantum dot solar cells[J]. Solar energy, 2020, 201: 339-347.

[16] WERNER J H, KOLODINSKI S, QUEISSER H J. Novel optimization principles and efficiency limits for semiconductor solar cells[J]. Physical review letters, 1994, 72(24): 3851-3854.

[17] LIN C C, LIU W L, SHIH C Y. Detailed balance model for intermediate band solar cells with photon conservation[J]. Optics express, 2011, 19(18): 16927-16933.

[18] KARIM M R, ZHAO H P. Design of InGaN-ZnSnN2 quantum wells for high-efficiency amber light emitting diodes[J]. Journal of applied physics, 2018, 124(3): 034303.

[19] PUNYA A, LAMBRECHT W R L. Band offsets between ZnGeN2, GaN, ZnO, and ZnSnN2 and their potential impact for solar cells[J]. Physical review B, 2013, 88(7): 075302.

[20] VURGAFTMAN I, MEYER J R, RAM-MOHAN L R. Band parameters for III-V compound semiconductors and their alloys[J]. Journal of applied physics, 2001, 89(11): 5815-5875.

[21] AHMAD A, STRAK P, KORONSKI K, et al. Critical evaluation of various spontaneous polarization models and induced electric fields in III-nitride multi-quantum wells[J]. Materials, 2021, 14(17): 4935.

[22] SHEERIN T P, TANNER D S P, SCHULZ S. Atomistic analysis of piezoelectric potential fluctuations in zinc-blende InGaN/GaN quantum wells: a Stillinger-Weber potential based analysis[J]. Physical review B, 2021, 103(16): 165201.

[23] WAGNER J M, BECHSTEDT F. Properties of strained wurtzite GaN and AlN: ab initiostudies[J]. Physical review B, 2002, 66(11): 115202.

[24] SHAN W, HAUENSTEIN R J, FISCHER A J, et al. Strain effects on excitonic transitions in GaN: deformation potentials[J]. Physical review B, 1996, 54(19): 13460.

[25] SHIMADA K, SOTA T, SUZUKI K. First-principles study on electronic and elastic properties of BN, AlN, and GaN[J]. Journal of applied physics, 1998, 84(9): 4951-4958.

ZHANG Jun, SHI Lei, YAN Zuwei. Conversion efficiency of strained wurtzite InxGa1-xN/ZnSnN2 core/shell quantum dot solar cells under external electric field[J]. 光电子快报(英文版), 2023, 19(3): 144.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!