激光与光电子学进展, 2017, 54 (5): 050601, 网络出版: 2017-05-03   

耐高温再生光纤光栅的生长规律

Growth Law of High Temperature Resistance Regenerated Fiber Grating
作者单位
1 武汉理工大学光纤传感与信号处理教育部重点实验室, 湖北 武汉 430070
2 武汉理工大学光纤传感技术国家工程实验室, 湖北 武汉 430070
摘要
擦除温度和再生温度相同时, 在800~950 ℃温度区间内, 光纤光栅的擦除时间和再生完成时间均随处理温度呈指数衰减。利用再生完成时间拟合函数, 得到紫外载氢标准通信光纤光栅的再生阈值温度为805 ℃, 并且当处理温度在855~905 ℃之间时, 不同温度下制得的再生光纤光栅的反射率大小服从高斯分布, 定量描述了光纤光栅再生的整个过程。提出了一种制作高反射率再生光纤光栅的方法, 当擦除温度和再生温度不同时, 该方法可将紫外载氢标准通信光纤上的再生光纤光栅的反射率从20%提高到43%。
Abstract
The erasing time and the regeneration complete time of fiber grating exponentially decay with temperature in the temperature interval of 800-950 ℃ when the erasing temperature and the regeneration temperature are the same. According to the fitting function of regeneration complete time, the regeneration threshold temperature of ultraviolet hydrogen loading standard communication fiber grating is 805 ℃. The reflectivity of regenerated fiber grating obeys Gaussian distribution when the treatment temperature is set between 855-905 ℃, which describes the whole regeneration process of fiber grating quantitatively. When the erasing temperature and the regeneration temperature are different, a new method to create a regenerated fiber grating with high reflectivity is obtained, and the method can improve the reflectivity of regenerated fiber grating used in ultraviolet hydrogen loading standard communication fiber from 20% to 43%.
参考文献

[1] Li Y H, Yang M W, Wang D N, et al. Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation[J]. Optics Express, 2009, 17(22): 19785-19790.

[2] 黄勇林, 李 杰, 开桂云, 等. 光纤光栅的温度补偿[J]. 光学学报, 2003, 23(6): 677-679.

    Huang Yonglin, Li Jie, Kai Guiyun, et al. Temperature compensation for fiber Bragg gratings[J]. Acta Optica Sinica, 2003, 23(6): 677-679.

[3] 姜德生, 何 伟. 光纤光栅传感器的应用概况[J]. 光电子·激光, 2002, 13(4): 420-430.

    Jiang Desheng, He Wei. Review of applications for fiber Bragg grating sensors[J]. Journal of Optoelectronics·Laser, 2002, 13(4): 420-430.

[4] 姜德生, 李剑芝, 梅家纯. 多模光纤光栅温度传感特性的实验研究[J]. 光学学报, 2004, 24(2): 175-178.

    Jiang Desheng, Li Jianzhi, Mei Jiachun. Temperature sensing properties of multimode fiber grating[J]. Acta Optica Sinica, 2004, 24(2): 175-178.

[5] Rathje J, Kristensen M, Pedersen J E. Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings[J]. Journal of Applied Physics, 2000, 88(2): 1050-1055.

[6] Fokine M. Formation of thermally stable chemical composition gratings in optical fibers[J]. Journal of the Optical Society of America B, 2002, 19(8): 1759-1765.

[7] Fokine M. Growth dynamics of chemical composition gratings in fluorine-doped silica optical fibers[J]. Optics Letters, 2002, 27(22): 1974-1976.

[8] Canning J, Stevenson M, Bandyopadhyay S, et al. Extreme silica optical fibre gratings[J]. Sensors, 2008, 8(10): 6448-6452.

[9] Wang T, Shao L Y, Canning J, et al. Regeneration of fiber Bragg gratings under strain[J]. Applied Optics, 2013, 52(10): 2080-2085.

[10] Canning J, Stevenson M, Fenton J, et al. Strong regenerated gratings[C]. SPIE, 2009, 7503: 750326.

[11] Shao L Y, Wang T, Canning J, et al. Bulk regeneration of optical fiber Bragg gratings[J]. Applied Optics, 2012, 51(30): 7165-7169.

[12] Wang T, Shao L Y, Canning J, et al. Temperature and strain characterization of regenerated gratings[J]. Optics Letters, 2013, 38(3): 247-249.

[13] Zhu J J, Zhang A P, Zhou B, et al. Effects of doping concentrations on the regeneration of Bragg gratings in hydrogen loaded optical fibers[J]. Optics Communications, 2011, 284(12): 2808-2811.

[14] Baker S R, Rourke H N, Baker V, et al. Thermal decay of fiber Bragg gratings written in boron and germanium codoped silica fiber[J]. Journal of Lightwave Technology, 1997, 15(8): 1470-1477.

[15] Erdogan T, Mizrahi V, Lemaire P J, et al. Decay of ultraviolet-induced fiber Bragg gratings[J]. Journal of Applied Physics, 1994, 76(1): 73-80.

[16] 王巧妮, 杨远洪, 何 俊, 等. 光纤布拉格光栅再生过程及模型研究[J]. 光学学报, 2016, 36(3): 0306001.

    Wang Qiaoni, Yang Hongyuan, He Jun, et al. Study of fiber Bragg grating regeneration process and regeneration model[J]. Acta Optica Sinica, 2016, 36(3): 0306001.

聂铭, 张东生, 吴梦绮, 张春峰. 耐高温再生光纤光栅的生长规律[J]. 激光与光电子学进展, 2017, 54(5): 050601. Nie Ming, Zhang Dongsheng, Wu Mengqi, Zhang Chunfeng. Growth Law of High Temperature Resistance Regenerated Fiber Grating[J]. Laser & Optoelectronics Progress, 2017, 54(5): 050601.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!