红外与激光工程, 2017, 46 (5): 0538002, 网络出版: 2017-07-10   

机载紫外DOAS成像光谱仪CCD成像电路的设计及实施

Design and implementation of CCD imaging circuit for airborne ultraviolet DOAS imaging spectrometer
作者单位
1 中国科学院安徽光学精密机械研究所, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
摘要
机载紫外DOAS成像光谱仪通过获取大气与地表的折射或散射的紫外光辐射, 监测大气痕量气体的分布与变化, 其电子学部件的重要组成部分为CCD成像电路。采用帧转移型面阵CCD-47-20为图像传感器, 以现场可编辑门阵列(FPGA)为核心控制器的成像电路模块, 设计并实现了一套完整的机载紫外光谱仪成像系统。CCD成像电路完成包括CCD驱动时序电路、CCD数据采集电路, 接收CCD模拟图像信号产生数字图像信号, 将数字图像信号通过差分芯片驱动以低压差分信号(LVDS)传输给机载通讯系统等功能。讨论了机载紫外成像光谱仪的设计过程, 并重点讨论了CCD成像电路的设计过程。设计的机载紫外DOAS成像光谱仪系统成像分辨率为0.286°。实验证明满足大气污染气体的观测需求。
Abstract
Airborne ultraviolet imaging DOAS(Differential Optical Absorption Spectroscopy) spectrometer monitors the distribution and changes of atmospheric trace gases by obtaining the UV radiation of atmosphere and surface reflection or scattering. In this spectrometer, the CCD imaging circuit is the core of electronic device. A complete system was designed and implemented by using frame transfer area array CCD-47-20. Field-Programmable Gate Array(FPGA) was adopted as the core controller of the CCD imaging circuit, which generated CCD driving sequences, CCD data acquisition, received and converted CCD analog imaging signal to digital signal. CCD digital imaging signal was drove by differential line driver and then acquired by the airborne communication system in low voltage differential signaling (LVDS) format. The design and implementation of the circuit was described, and the design process of the CCD imaging circuit was mainly discussed. The imaging resolution of airborne ultraviolet imaging DOAS spectrometer monitoring is 0.286°. The experiments show that the requirements of polluting gases observation can be satisfied.
参考文献

[1] 刘进, 司福祺, 周海金,等. 机载成像差分吸收光谱技术测量区域NO2二维分布研究[J]. 物理学报, 2015, 64(3):034217.

    Liu Jin, Si Fuqi, Zhou Haijin, et al. Observation of two-dimensional distributions of NO2 with airborne imaging DOAS technology[J]. Acta Physica Sinica, 2015, 64(3):034217. (in Chinese)

[2] 赵其昌, 杨勇, 李叶飞,等. 大气痕量气体遥感探测仪发展现状和趋势[J]. 中国光学, 2013, 6(2): 156-162.

    Zhao Qichang, Yang Yong, Li Yefei, et al. Development status and trends of atmospheric trace gas remote sensing instruments[J]. Chinese Optics, 2013, 6(2): 156-162. (in Chinese)

[3] 王煜, 陆亦怀, 赵欣,等. 星载差分吸收光谱仪 CCD 成像电路的设计及实施[J]. 激光与红外, 2015, 6: 663-668.

    Wang Yu, Lu Yihuai, Zhao Xin, et al. Design and implementation of CCD imaging circuit for satellite-borne DOAS spectrometer[J]. Laser & Infrared, 2015, 6: 663-668. (in Chinese)

[4] 高闽光, 刘文清, 张天舒, 等. 机载FTIR被动遥测大气痕量气体[J]. 光谱学与光谱分析, 2006, 26(12): 2203-2206.

    Gao Minguang, Liu Wenqing, Zhang Tianshu, et al. Remote sensing of atmospheric trace gas by airborne passive FTIR[J]. Spectroscopy and Spectral Analysis, 2006, 26(12): 2203-2206. (in Chinese)

[5] 李双, 裘桢炜, 王相京. 星载大气主要温室气体监测仪杂光模拟分析[J]. 红外与激光工程, 2015, 44(2): 616-619.

    Li Shuang, Qiu Zhenwei, Wang Xiangjin. Stray light simulation and analysis of space-borne spatial heterodyne spectrometer for monitoring greenhouse gases[J]. Infrared and Laser Engineering, 2015, 44(2): 616-619. (in Chinese)

[6] 张浩, 方伟, 叶新, 等. 中/长波红外双衍射级次共路Offner成像光谱仪[J]. 红外与激光工程, 2015, 23(4): 965-974.

    Zhang Hao, Fang Wei, Ye Xin, et al. Dual-order overlapped Offner imaging spectrometer in middle-and long-wave infrared regions[J]. Infrared and Laser Engineering, 2015, 23(4): 965-974. (in Chinese)

[7] 刘进. 基于成像DOAS 技术的污染气体浓度分布监测方法研究[D]. 合肥: 中国科学院大学, 2015.

    Liu Jin. Observation of the concentration and distribution of polluted gas based on imaging differential optical absorption spectroscopy technique[D]. Hefei: University of Chinese Academy of Sciences, 2015. (in Chinese)

[8] E2V technologies. Datasheet for CCD47-20 back illuminated high performance AIMO[EB/OL].[2006] http://www.opticsjournal.net.

[9] 李亚鹏, 何斌, 付天骄. 行间转移型面阵 CCD 成像系统设计[J]. 红外与激光工程, 2014, 43(8): 2602-2606.

    Li Yapeng, He Bin, Fu Tianjiao. Design of imaging system of interline area CCD[J]. Infrared and Laser Engineering, 2014, 43(8): 2602-2606. (in Chinese)

[10] 张林, 李永新, 胡学友. 基于相关双采样技术的CCD视频信号处理研究[J]. 宇航计测技术, 2007, 2: 33-37.

    Zhang Lin, Li Yongxin, Hu Xueyou. Research on CCD video signal processing based on correlated double sampling[J]. Journal of Astronautic Metrology and Measurement, 2007, 2: 33-37. (in Chinese)

[11] 陈伟, 郑玉权, 薛庆生. 机载宽视场大相对孔径成像光谱仪[J]. 光学 精密工程, 2015, 23(1): 15-21.

    Chen Wei, Zheng Yuquan, Xue Qingsheng. Airborne imaging and spectrometer with wide field of view large relative-aperture[J]. Optics and Precision Engineering, 2015, 23(1):15-21. (in Chinese)

[12] Specifications datasheet for Analog Devices AD9814 Complete 16-bit imaging signal processor [EB/OL]. http://www.analog.com/en/produts/digital-to-analog-converters/ad9144.html.

[13] Heue K P, Wagner T, Broccardo S P, et al. Direct observation of two dimensional trace gas distribution with an airborne imaging DOAS instrument [J]. Atmospheric Chemistry & Physics, 2008, 8(3): 6707-6717.

[14] Sch 觟nhardt A, Altube P, Gerilowski K, et al. A wide field-of-view imaging DOAS instrument for two-dimensional trace gas mapping from aircraft[J]. Studies in Health Technology & Informatics, 2014, 7(4): 3591-3644.

邱晓晗, 王煜, 常振, 田禹泽, 司福祺. 机载紫外DOAS成像光谱仪CCD成像电路的设计及实施[J]. 红外与激光工程, 2017, 46(5): 0538002. Qiu Xiaohan, Wang Yu, Chang Zhen, Tian Yuze, Si Fuqi. Design and implementation of CCD imaging circuit for airborne ultraviolet DOAS imaging spectrometer[J]. Infrared and Laser Engineering, 2017, 46(5): 0538002.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!