中国激光, 2020, 47 (1): 0103001, 网络出版: 2020-01-09   

脉冲激光改性金属纳米薄膜的等离子体特性 下载: 1771次

Pulsed-Laser-Modified Plasmon Properties of Metal Nanofilms
作者单位
1 上海理工大学光电信息与计算机工程学院, 上海 200093
2 教育部光学仪器与系统工程研究中心, 上海市现代光学系统重点实验室, 上海 200093
引用该论文

孙文峰, 洪瑞金, 陶春先, 张大伟. 脉冲激光改性金属纳米薄膜的等离子体特性[J]. 中国激光, 2020, 47(1): 0103001.

Wenfeng Sun, Ruijin Hong, Chunxian Tao, Dawei Zhang. Pulsed-Laser-Modified Plasmon Properties of Metal Nanofilms[J]. Chinese Journal of Lasers, 2020, 47(1): 0103001.

参考文献

[1] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

[2] Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193.

[3] Oh Y, Lee J, Lee M. Fabrication of Ag-Au bimetallic nanoparticles by laser-induced dewetting of bilayer films[J]. Applied Surface Science, 2018, 434: 1293-1299.

[4] Stratakis E, Kymakis E. Nanoparticle-based plasmonic organic photovoltaic devices[J]. Materials Today, 2013, 16(4): 133-146.

[5] Song J B, Huang P, Duan H W, et al. Plasmonic vesicles of amphiphilic nanocrystals: optically active multifunctional platform for cancer diagnosis and therapy[J]. Accounts of Chemical Research, 2015, 48(9): 2506-2515.

[6] Rodrigo D, Limaj O, Janner D, et al. Mid-infrared plasmonic biosensing with graphene[J]. Science, 2015, 349(6244): 165-168.

[7] 张昊鹏, 姜涛, 高永峰, 等. 表面等离子体受激辐射放大领结型纳米天线的SERS单分子探测[J]. 中国激光, 2014, 41(9): 0908002.

    Zhang H P, Jiang T, Gao Y F, et al. Single molecule detection by SERS of a spaser-based bowtie nanoantenna[J]. Chinese Journal of Lasers, 2014, 41(9): 0908002.

[8] Noguez C. Surface plasmons on metal nanoparticles: the influence of shape and physical environment[J]. The Journal of Physical Chemistry C, 2007, 111(10): 3806-3819.

[9] Liu Y T, Zhou J, Yuan X C, et al. Hydrothermal synthesis of gold polyhedral nanocrystals by varying surfactant concentration and their LSPR and SERS properties[J]. RSC Advances, 2015, 5(84): 68668-68675.

[10] Vilayurganapathy S, Devaraj A, Colby R, et al. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO[J]. Nanotechnology, 2013, 24(9): 095707.

[11] Fang Y C, Blinn K, Li X X, et al. Strong coupling between Rhodamine 6G and localized surface plasmon resonance of immobile Ag nanoclusters fabricated by direct current sputtering[J]. Applied Physics Letters, 2013, 102(14): 143112.

[12] McMahon M D, Lopez R, Meyer III H M, et al. Rapid tarnishing of silver nanoparticles in ambient laboratory air[J]. Applied Physics B, 2005, 80(7): 915-921.

[13] Resta V, Siegel J, Bonse J, et al. Sharpening the shape distribution of gold nanoparticles by laser irradiation[J]. Journal of Applied Physics, 2006, 100(8): 084311.

[14] Prevo B G, Esakoff S A, Mikhailovsky A, et al. Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation[J]. Small, 2008, 4(8): 1183-1195.

[15] Chen C Y, Wang J Y, Tsai F J, et al. Fabrication of sphere-like Au nanoparticles on substrate with laser irradiation and their polarized localized surface plasmon behaviors[J]. Optics Express, 2009, 17(16): 14186-14198.

[16] Hamad S, Podagatlapalli G K, Tewari S P, et al. Influence of picosecond multiple/single line ablation on copper nanoparticles fabricated for surface enhanced Raman spectroscopy and photonics applications[J]. Journal of Physics D: Applied Physics, 2013, 46(48): 485501.

[17] Xia Y N, Halas N J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures[J]. MRS Bulletin, 2005, 30(5): 338-348.

[18] Austin L A. MacKey M A, Dreaden E C, et al. The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery[J]. Archives of Toxicology, 2014, 88(7): 1391-1417.

[19] Serna R, Suárez-García A, Afonso N, et al. Optical evidence for reactive processes when embedding Cu nanoparticles in Al2O3 by pulsed laser deposition[J]. Nanotechnology, 2006, 17(18): 4588-4593.

[20] 马守宝, 刘琼, 钱晓晨, 等. 铝纳米颗粒表面等离子体共振峰可控性研究[J]. 光学学报, 2017, 37(9): 0931001.

    Ma S B, Liu Q, Qian X C, et al. Controllability study of surface plasmon resonance spectra of aluminium nanoparticles[J]. Acta Optica Sinica, 2017, 37(9): 0931001.

[21] Oh Y, Lee M. Single-pulse transformation of Ag thin film into nanoparticles via laser-induced dewetting[J]. Applied Surface Science, 2017, 399: 555-564.

[22] Henley S J, Carey J D. Silva S R P. Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films[J]. Physical Review B, 2005, 72(19): 195408.

[23] 陈忠贇, 方淦, 曹良成, 等. 飞秒激光光镊直写银微纳结构[J]. 中国激光, 2018, 45(4): 0402006.

    Chen Z Y, Fang G, Cao L C, et al. Direct writing of silver micro-nanostructures by femtosecond laser tweezer[J]. Chinese Journal of Lasers, 2018, 45(4): 0402006.

[24] Balamurugan B, Maruyama T. Size-modified d bands and associated interband absorption of Ag nanoparticles[J]. Journal of Applied Physics, 2007, 102(3): 034306.

[25] Ehrenreich H, Philipp H R, Segall B. Optical properties of aluminum[J]. Physical Review, 1963, 132(5): 1918-1928.

[26] Hong R J, Wang X H, Ji J L, et al. ITO induced tunability of surface plasmon resonance of silver thin film[J]. Applied Surface Science, 2015, 356: 701-706.

[27] Nikov R G, Nedyalkov N N, Atanasov P A, et al. Characterization of Ag nanostructures fabricated by laser-induced dewetting of thin films[J]. Applied Surface Science, 2016, 374: 36-41.

[28] Jiang M M, Chen H Y, Li B H, et al. Hybrid quadrupolar resonances stimulated at short wavelengths using coupled plasmonic silver nanoparticle aggregation[J]. Journal of Materials Chemistry C, 2014, 2(1): 56-63.

[29] Rodriguez R D, Sheremet E, Nesterov M, et al. Aluminum and copper nanostructures for surface-enhanced Raman spectroscopy: a one-to-one comparison to silver and gold[J]. Sensors and Actuators B: Chemical, 2018, 262: 922-927.

[30] Ding S Y, Yi J, Li J F, et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature Reviews Materials, 2016, 1(6): 16021.

[31] Moskovits M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals[J]. The Journal of Chemical Physics, 1978, 69(9): 4159-4161.

[32] 张垒, 张霞, 柳晓钰, 等. Fe 3+对植酸封端的金纳米颗粒SERS性能的影响[J]. 中国激光, 2019, 46(3): 0311006.

    Zhang L, Zhang X, Liu X Y, et al. Influence of Fe 3+ on SERS performance of phytic acid terminated gold nanoparticles[J]. Chinese Journal of Lasers, 2019, 46(3): 0311006.

孙文峰, 洪瑞金, 陶春先, 张大伟. 脉冲激光改性金属纳米薄膜的等离子体特性[J]. 中国激光, 2020, 47(1): 0103001. Wenfeng Sun, Ruijin Hong, Chunxian Tao, Dawei Zhang. Pulsed-Laser-Modified Plasmon Properties of Metal Nanofilms[J]. Chinese Journal of Lasers, 2020, 47(1): 0103001.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!