激光与光电子学进展, 2013, 50 (7): 070602, 网络出版: 2013-07-01   

用金纳米棒修饰的亚微米光纤定点输送微颗粒的研究

Position Designated Delivery of Microparticles Using a Submicron Fiber Decorated with Gold Nanorods
作者单位
广东医学院信息工程学院, 广东 东莞 523808
摘要
通过热熔拉法将单模光纤拉制成亚微米尺寸的光纤,并借助光学显微镜的定位作用,在亚微米光纤的特定位置沉积金纳米棒(长度和中截面直径分别为80 nm和20 nm)。利用光纤倏逝波激发金纳米棒的局域表面等离波子共振(LSPR)。由于强的共振吸收和光热效应,当激光功率增加到30 mW时,亚微米光纤上沉积金纳米棒的位置会产生一个微米尺寸的气泡,激光在该位置将被等离波子共振吸收和气泡散射掉,在气泡后面位置的光纤中观察不到光的传输。靠近光纤的900 nm的聚苯乙烯颗粒被倏逝波所产生的梯度力捕获到光纤表面,并在散射力的作用下沿着光的传播方向运动,当颗粒运动到气泡位置时,将会停止向前运动。该技术可用于微米颗粒的定点输送。
Abstract
The submicron fiber is fabricated by drawing a single-mode optical fiber through a flame-heated treatment. Gold nanorods (length and middle-section diameter are 80 nm and 20 nm, respectively) are deposited on the designated position of the submicro fiber by the positioning function of optical microscope, and the local surface plasmon resonance (LSPR) of gold nanorods is excited by the evanescent wave around the fiber. When the optical power increases to 30 mW, due to strong plasmon absorption and photothermal conversion, a microbubble forms at the position of the fiber decorated with the gold nanorods. Therefore, the laser light at this position is absorbed by plasmon resonance and scattered by the bubble. Optical transmission is not observed behind the bubble. Polystyrene particles (900 nm in diameter) near the fiber can be trapped by the gradient force, and then delivered along the direction of light propagation due to the scattering force induced by the evanescent wave. Once the particles move to the position of the bubble, they will stop their advancing. This technology can be used for targeted delivery of microparticles.
参考文献

[1] A Ashkin, J M Dziedzic, J E W Bjokholm, et al.. Observation of a single-beam gradient force optical trap for dielectric particle[J]. Opt Lett, 1986, 11(5): 288-290.

[2] A Ashkin, J M Dziedzic. Optical trapping and manipulation of viruses and bacteria[J]. Science, 1987, 235(4795): 1517-1520.

[3] S M Block, L S B Goldstein, B J Schnapp. Bead movement by single kinesin molecules studied with optical tweezers[J]. Nature, 1990, 348(6299): 348-352.

[4] 李银妹, 楼立人. 纳米光镊技术——新兴的纳米生物技术[J]. 激光与光电子学进展, 2003, 40(1): 1-5.

    Li Yinmei, Lou Liren. Nanometer optical tweezers technology: an emerging nano biotechnology[J]. Laser & Optoelectronics Progress, 2003, 40(1):1-5.

[5] M Ozkan, M Wang, C Ozkan, et al.. Optical manipulation of objects and biological cells in microfluidic devices[J]. Biomed Microdevices, 2003, 5(1): 61-67.

[6] 吴智辉, 莫华, 黄代政, 等. 心律失常患者红细胞的光镊拉曼光谱[J]. 激光与光电子学进展, 2011, 48(2): 021701.

    Wu Zhihui, Mo Hua, Huang Daizheng, et al.. Red blood cells in patients with arrhythmias using optical tweezers Raman spectroscopy[J]. Laser & Optoelectronics Progress, 2011, 48(2): 021701.

[7] 孙晴, 任煜轩, 姚焜, 等. 阵列光镊衍射元件的算法设计[J]. 中国激光, 2011, 38(1): 0109003.

    Sun Qing, Ren Yuxuan, Yao Kun, et al.. Algorithm for diffractive optical element of array optical tweezers[J]. Chinese J Lasers, 2011, 38(1): 0109003.

[8] 李宝军, 辛洪宝, 张垚, 等. 光捕获和光操控研究进展[J]. 光学学报, 2011, 31(9): 0900126.

    Li Baojun, Xin Hongbao, Zhang Yao, et al.. Progress of optical trapping and manipulation[J]. Acta Optica Sinica, 2011, 31(9): 0900126.

[9] Tao Tao, Jing Li, Qian Long, et al.. 3D trapping and manipulation of micro-particles using holographic optical tweezers with optimized computer-generated holograms[J]. Chin Opt Lett, 2011, 9(12): 120010.

[10] Mincheng Zhong, Guosheng Xue, Jinhua Zhou, et al.. Measurement of interaction force between RGD-peptide and Hela cell surface by optical tweezers[J]. Chin Opt Lett, 2012, 10(10): 101701.

[11] S. Kawata, T. Sugiura. Movement of micrometer-sized particles in the evanescent field of a laser beam[J]. Opt Lett, 1992, 17(11): 772-774.

[12] T Tanakaa, S Yamamoto. Optically induced propulsion of small particles in an evenescent field of higher propagation mode in a multimode, channeled waveguide[J]. Appl Phys Lett, 2000, 77(20): 3131-3133.

[13] S Y Lin, E Schonbrun, K Crozier. Optical manipulation with planar silicon microring resonators[J]. Nano Lett, 2010, 10(7): 2408-2411.

[14] G Brambilla, G S Murugan, J S Wilkinson, et al.. Optical manipulation of microspheres along a subwavelength optical wire[J]. Opt Lett, 2007, 32(20): 3041-3043.

[15] Y Li, L L Xu, B J Li. Optical delivery of nanospheres using arbitrary bending nanofibers[J]. J Nanopart Res, 2012, 14(4): 799.

[16] W H Ni, H J Chen, X S Kou, et al.. Optical fiber-excited surface plasmon resonance spectroscopy of single and ensemble gold nanorods[J]. J Phys Chem C, 2008, 112(22): 8105-8109.

[17] Z W Liu, W H Hung, M Aykol, et al.. Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates[J]. Nanotechnology, 2010, 21(10): 105304.

[18] G Baffou, C Girard, R Quidant. Mapping heat origin in plasmonic structures[J]. Phys Rev Lett, 2010, 104(13): 136805.

[19] J S Donner, G Baffou, D McCloskey, et al.. Plasmon-assisted optofluidics[J]. ACS Nano, 2011, 5(7): 5457-5462.

[20] E Messina, E Cavallaro, A Cacciola, et al.. Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties[J]. ACS Nano, 2011, 5(2): 905-913.

[21] D G Grier. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816.

李英, 胡艳军. 用金纳米棒修饰的亚微米光纤定点输送微颗粒的研究[J]. 激光与光电子学进展, 2013, 50(7): 070602. Li Ying, Hu Yanjun. Position Designated Delivery of Microparticles Using a Submicron Fiber Decorated with Gold Nanorods[J]. Laser & Optoelectronics Progress, 2013, 50(7): 070602.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!