发光学报, 2017, 38 (11): 1493, 网络出版: 2017-12-25  

LED柔性照明及显示用超弹性柔性荧光膜

Highly Elastic and Flexible Phosphor Film for Flexible LED Lighting and Display Applications
作者单位
1 太原理工大学 材料科学与工程学院, 山西 太原 030024
2 太原理工大学 新材料界面科学与工程教育部重点实验室, 山西 太原 030024
3 太原理工大学 轻纺工程学院, 山西 太原 030024
4 太原理工大学 化学化工学院, 山西 太原 030024
摘要
柔性LED是近年来照明及显示领域研究的热点之一。本文提出了一种新的基于有机硅胶(PDMS)制备的兼具超弹性和柔性的荧光薄膜, 它不仅在-50~230 ℃这一较宽的温度范围内展现了良好的热稳定性, 还保持了原料荧光粉的光学性能。所制备的透明PDMS基质膜和相应的荧光膜具有完全的柔性和超弹性, 其最大伸长率分别高达400%与275%。此外, 采用所制掺YAG荧光膜和普通商用1 W蓝光芯片简单封装的白光LED灯珠满足日常白光照明的应用要求, 呈现出约6 925 K的平均色温, 约71的平均显色指数, 115.7 lm/W左右的平均发光效率。最后, 基于所提出荧光膜成膜工艺而制备的三色3×3柔性阵列显示, 可以轻易被拉伸、卷曲和折叠,显示了它在柔性照明及显示器件方面具有应用价值和潜力。
Abstract
Flexible LEDs have attracted significant interest in recent years for lighting and display applications. We present a polydimethylsiloxane based phosphor film that is capable of high elasticity and flexibility while actively emitting light. It not only exhibits good thermal stability in a wide range of -50-230 ℃, but also retains the optical properties as raw phosphors. The prepared transparent PDMS thin film and the corresponding phosphor film enable complete flexibility and elasticity, the largest elongation is up to 400% and 275%, respectively. Besides, white LEDs were fabricated using prepared YAG-doped phosphor film, showing average Tc of 6 925 K, CRI of 71 and mean luminous efficiency of 115.7 lm/W. Furthermore, the proposed photoluminescent films in two colors and a flexible 3×3 LED array glowing with three colors were fabricated using thin elastic and transparent rubber and subjected to stretching, rolling and folding to demonstrate their promising use in flexible lighting and display applications.
参考文献

[1] KRASNOV A N. High-contrast organic light-emitting diodes on flexible substrates [J]. Appl. Phys. Lett., 2002, 80:3853-3855.

[2] HELANDER M G, WANG Z B, GREINER M T, et al.. Oxidized gold thin films: an effective material for high-performance flexible organic optoelectronics [J]. Adv. Mater., 2010, 22:2037-2040.

[3] XU X Z, ZHOU J, LUBINEAU G, et al.. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics [J]. Nanoscale, 2016, 8:12294-12306.

[4] CHOI J H, CHO E H, LEE Y S, et al.. Fully flexible GaN light-emitting diodes through nanovoid-mediated transfer [J]. Adv. Opt. Mater., 2014, 2:267-274.

[5] TIAN P F, MCKENDRY J J, GU E, et al.. Fabrication, characterization and applications of flexible vertical InGaN micro-light emitting diode arrays [J]. Opt. Express, 2016, 24:699-707.

[6] SHER C W, CHEN K J, LIN C C, et al.. Large-area, uniform white light LED source on a flexible substrate [J]. Opt. Express, 2015, 23:A1167-A1178.

[7] BURROWS P E, GRAFF G L, GROSS M E, et al.. Ultra barrier flexible substrates for flat panel displays [J]. Displays, 2001, 22:65-69.

[8] HAN T H, LEE Y B, CHOI J H, et al.. Extremely efficient flexible organic light-emitting diodes with modified graphene anode [J]. Nat. Photon., 2012, 6:105-110.

[9] SEKITANI T, NAKAJIMA H, MAEDA H, et al.. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors [J]. Nat. Mater., 2009, 8:494-499.

[10] SHIN M K, OH J Y, BAUGHMAN R H, et al.. Elastomeric conductive composites based on carbon nanotube forests [J]. Adv. Mater., 2010, 22:2663-2667.

[11] WHITE M S, KALTENBRUNNER M, GLOWACKI E D, et al.. Ultrathin, highly flexible and stretchable PLEDs [J]. Nat. Photon., 2013, 7:811-816.

[12] HU L, KIM H S, LEE J Y, et al.. Scalable coating and properties of transparent, flexible, silver nanowire electrodes [J]. ACS Nano, 2010, 4: 2955-2963.

[13] DEMIR H V, NIZAMOGLU S, ERDEM T, et al.. Quantum dot integrated LEDs using photonic and excitonic color conversion [J]. Nano Today, 2011, 6:632-647.

[14] YANG X, DIVAYANA Y, LECK K S, et al.. A bright cadmium-free, hybrid organic/quantum dot white light-emitting diode [J]. Appl. Phys. Lett., 2012, 101:233110.

[15] ALTINTAS Y, GENC S, TALPUR M Y, et al.. CdSe/ZnS quantum dot films for high performance flexible lighting and display applications [J]. Nanotechnology, 2016, 27:295604.

[16] WENG S F. Fourier Transform Infrared Spectroscopy [M]. 2nd ed. Beijing: Chemical Industry Press, 2014.

[17] E1641-Standard test method for decomposition kinetics by thermogravimetry [S]. US: ASTM, 2007.

[18] WANG H H, HE P, YAN H G, et al.. Synthesis, characteristics and luminescent properties of a new europium(Ⅲ) organic complex applied in near UV LED [J]. Sens. Actuators B, 2011, 156:6-11.

[19] FISCHER A, KOPRUCKI T, GRTNER K, et al.. Feel the heat: nonlinear electrothermal feedback in organic LEDs [J]. Adv. Funct. Mater., 2014, 24:3367-3374.

[20] JACOBS R R, KRUPKE W F, WEBER M J. Measurement of excited-state-absorption loss for Ce3+ in Y3A15O12 and implications for tunable 5d→4f rare-earth lasers [J]. Appl. Phys. Lett., 1978, 33:410-412.

[21] JIA J, ZHANG A Q, JIA H S, et al.. Preparation and properties of the flexible remote phosphor film for blue chip-based white LED [J]. Mater. Design, 2016, 102:8-13.

[22] HATANALKA H, SUAANUNIA N. Room-temperature-curable organopolysiloxane composition: US: 5405889 [P]. 1995-04-11.

[23] 魏绪玲, 付含琦, 郑聚成, 等. 橡胶补强填料的研究进展 [J]. 高分子通报, 2014, 2:31-35.

    WEI X L, FU H Y, ZHENG J C, et al.. Progress of reinforcing filler of rubber [J]. Polymer Bull., 2014, 2:31-35. (in Chinese).

[24] 田军涛, 许炳才. 非炭黑橡胶补强填料的应用研究进展 [J]. 橡胶工业, 2006, 53:52-61.

    TIAN J T, XU B C. Research progress and application of non-carbon black reinforce filler for rubber [J]. China Rubber Industry, 2006, 53:52-61. (in Chinese)

[25] SPERLING L H. Joined and sequential interpenetrating polymer networks based on poly(dimethylsiloxane) [J]. J. Appl. Polym. Sci., 1972, 16:3041-3046.

[26] HE X W, WIDMAIER J M, HERZ J E, et al.. Polydimethylsiloxane/poly (methylmethacrylate) interpenetrating polymer networks: 2. Synthesis and properties [J]. Polymer, 1992, 33:866-871.

[27] URAGAMI T, SUMIDA I, MIYATA T, et al.. Pervaporation characteristics in removal of benzene from water through polystyrene-poly(dimethylsiloxane) IPN membranes [J]. Mater. Sci. Appl., 2011, 2:169-179.

[28] GUILD J. The colorimetric properties of the spectrum [J]. Philos. Trans. R. Soc. Lond., 1932, 230:149-187.

[29] FORSTER T. Transfer mechanism of electronic excitation [J]. Discuss. Faraday Soc., 1959, 27:7-17.

[30] GUO T F, WEN T C, HUANG Y S, et al.. White-emissive tandem-type hybrid organic/polymer diodes with (0.33,0.33) chromaticity coordinates [J]. Opt. Express, 2009, 17:21205-21215.

[31] Nichia Application Guide. Light measurement and units [R]. Japan: Nichia, 2016.

[32] CHEN K J, LIN B C, KUO H C, et al.. Effect of the thermal characteristics of phosphor for the conformal and remote structures in white light-emitting diodes [J]. IEEE Photon. J., 2013, 5:8200508.

贾静, 贾虎生, 张爱琴, 申倩倩, 李栋信, 刘旭光. LED柔性照明及显示用超弹性柔性荧光膜[J]. 发光学报, 2017, 38(11): 1493. JIA Jing, JIA Hu-sheng, ZHANG Ai-qin, SHEN Qian-qian, LI Dong-xin, LIU Xu-guang. Highly Elastic and Flexible Phosphor Film for Flexible LED Lighting and Display Applications[J]. Chinese Journal of Luminescence, 2017, 38(11): 1493.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!