光学学报, 2019, 39 (8): 0802001, 网络出版: 2019-08-07   

基于原位探测的空间冷原子钟的性能分析 下载: 1105次

Performance Analysis of Space Cold Atomic Clock Based on In-Situ Atomic Detection
彭向凯 1,2任伟 1项静峰 1王新文 1,2刘亮 1,2,*吕德胜 1,2,**
作者单位
1 中国科学院上海光学精密机械研究所量子光学重点实验室中国科学院冷原子物理中心, 上海 201800
2 中国科学院大学材料科学与光电技术学院, 北京 100049
引用该论文

彭向凯, 任伟, 项静峰, 王新文, 刘亮, 吕德胜. 基于原位探测的空间冷原子钟的性能分析[J]. 光学学报, 2019, 39(8): 0802001.

Xiangkai Peng, Wei Ren, Jingfeng Xiang, Xinwen Wang, Liang Liu, Desheng Lü. Performance Analysis of Space Cold Atomic Clock Based on In-Situ Atomic Detection[J]. Acta Optica Sinica, 2019, 39(8): 0802001.

参考文献

[1] Laurent P, Lemonde P, Simon E, et al. A cold atom clock in absence of gravity[J]. The European Physical Journal D, 1998, 3(3): 201-204.

[2] Laurent P, Abgrall M, Jentsch C, et al. Design of the cold atom PHARAO space clock and initial test results[J]. Applied Physics B, 2006, 84(4): 683-690.

[3] Cacciapuoti L, Salomon C. Space clocks and fundamental tests: the ACES experiment[J]. The European Physical Journal Special Topics, 2009, 172(1): 57-68.

[4] Laurent P, Massonnet D, Cacciapuoti L, et al. The ACES/PHARAO space mission[J]. Comptes Rendus Physique, 2015, 16(5): 540-552.

[5] Peterman P, Gibble K, Laurent P, et al. Microwave lensing frequency shift of the PHARAO laser-cooled microgravity atomic clock[J]. Metrologia, 2016, 53(2): 899-907.

[6] Lü D, Wang B, Li T, et al. Cold atom space clock with counter-propagating atoms[J]. Chinese Optics Letters, 2010, 8(8): 735-737.

[7] Qu Q Z, Wang B, Lü D S, et al. Integrated design of a compact magneto-optical trap for space applications[J]. Chinese Optics Letters, 2015, 13(6): 061405.

[8] Ren W, Xiang J F, Zhang Y T, et al. Development of an ultra-high vacuum system for space cold atom clock[J]. Vacuum, 2015, 116: 54-59.

[9] 屈求智, 汪斌, 吕德胜, 等. 空间冷原子钟原理样机地面测试结果[J]. 中国激光, 2015, 42(9): 0902006.

    Qu Q Z, Wang B, Lü D S, et al. Principle and progress of cold atom clock in space[J]. Chinese Journal of Lasers, 2015, 42(9): 0902006.

[10] Ren W, Gao Y C, Li T, et al. Microwave interrogation cavity for the rubidium space cold atom clock[J]. Chinese Physics B, 2016, 25(6): 060601.

[11] Li L, Ji J W, Ren W, et al. Automatic compensation of magnetic field for a rubidium space cold atom clock[J]. Chinese Physics B, 2016, 25(7): 073201.

[12] Liu L, Lü D S, Chen W B, et al. In-orbit operation of an atomic clock based on laser-cooled 87Rb atoms [J]. Nature Communications, 2018, 9: 2760.

[13] Dick GJ. Local oscillator induced instabilities in trapped ion frequency standards[R]. [S.l.: s.n.], 1987: 133- 147.

[14] DickG, PrestageJ, GreenhallC, et al. Local oscillator induced degradation of medium-term stability in passive atomic frequency standards[C]∥The 22nd Annual Precise Time and Time Interval Applications and Planning Meeting, December 4-6, 1990, Vienna, Virginia. Washington, D.C.: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990: 487- 508.

[15] Santarelli G, Audoin C, Makdissi A, et al. Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1998, 45(4): 887-894.

[16] Cheng H D, Zhang W Z, Ma H Y, et al. Laser cooling of rubidium atoms from background vapor in diffuse light[J]. Physical Review A, 2009, 79(2): 023407.

[17] Xiao L, Wang X C, Zhang W Z, et al. Loading of cold 87Rb atom with diffuse light in an integrating sphere [J]. Chinese Optics Letters, 2010, 8(3): 253-255.

[18] Liu P, Meng Y L, Wan J Y, et al. Scheme for a compact cold-atom clock based on diffuse laser cooling in a cylindrical cavity[J]. Physical Review A, 2015, 92(6): 062101.

[19] 李琳, 刘鹏, 吉经纬, 等. 积分球冷原子钟探测光功率自动稳定实验研究[J]. 光学学报, 2016, 36(8): 0814004.

    Li L, Liu P, Ji J W, et al. Probe laser power stabilization for integrated sphere cold atom clock[J]. Acta Optica Sinica, 2016, 36(8): 0814004.

[20] 王秀梅, 李琳, 孟艳玲, 等. 积分球冷原子钟冷原子数稳定的新方法[J]. 光学学报, 2017, 37(8): 0802001.

    Wang X M, Li L, Meng Y L, et al. New method for cold atom number stabilization in integrating sphere cold atom clock[J]. Acta Optica Sinica, 2017, 37(8): 0802001.

[21] 王秀梅, 孟艳玲, 李琳, 等. 积分球冷原子钟的探测光频率和强度噪声[J]. 中国激光, 2017, 44(9): 0912001.

    Wang X M, Meng Y L, Li L, et al. Frequency and intensity noises of probe laser in integrating sphere cold atom clock[J]. Chinese Journal of Lasers, 2017, 44(9): 0912001.

[22] Li R X, Gibble K. Phase variations in microwave cavities for atomic clocks[J]. Metrologia, 2004, 41(6): 376-386.

[23] Itano W M, Bergquist J C, Bollinger J J, et al. Quantum projection noise: population fluctuations in two-level systems[J]. Physical Review A, 1993, 47(5): 3554-3570.

[24] Santarelli G, Laurent P, Lemonde P, et al. Quantum projection noise in an atomic fountain: a high stability cesium frequency standard[J]. Physical Review Letters, 1999, 82(23): 4619-4622.

[25] Dick GJ, Wang RT, Tjoelker RL. Cryo-cooled sapphire oscillator with ultra-high stability[C]∥Proceedings of the 1998 IEEE International Frequency Control Symposium, May 29-29, 1998, Pasadena, CA, USA. New York: IEEE, 1998: 528- 533.

[26] RiehleF. Frequency standards: basics and applications[M]. Hoboken: John Wiley & Sons, Inc., 2006: 221- 225.

[27] Xiang J F, Cheng H N, Peng X K, et al. Loss of cold atoms due to collisions with residual gases in free flight and in a magneto-optical trap[J]. Chinese Physics B, 2018, 27(7): 073701.

[28] Zhang SG. Déplacement de fréquence dû au ayonnement du corps noir dans une fontaine atomique à césium et amélioration des performances de l'horloge[D]. Paris: Université Paris Ⅵ, 2004: 79- 89.

[29] Jefferts R, Shirley J, Parker E, et al. Accuracy evaluation of NIST-F1[J]. Metrologia, 2002, 39(4): 321-336.

[30] Heavner P, Jefferts R, Donley A, et al. NIST-F1: recent improvements and accuracy evaluations[J]. Metrologia, 2005, 42(5): 411-422.

[31] Li R X, Gibble K. Evaluating and minimizing distributed cavity phase errors in atomic clocks[J]. Metrologia, 2010, 47(5): 534-551.

[32] Boussert B, Theobald G, Cerez P, et al. Frequency shifts in cesium beam clocks induced by microwave leakages[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45(3): 728-738.

彭向凯, 任伟, 项静峰, 王新文, 刘亮, 吕德胜. 基于原位探测的空间冷原子钟的性能分析[J]. 光学学报, 2019, 39(8): 0802001. Xiangkai Peng, Wei Ren, Jingfeng Xiang, Xinwen Wang, Liang Liu, Desheng Lü. Performance Analysis of Space Cold Atomic Clock Based on In-Situ Atomic Detection[J]. Acta Optica Sinica, 2019, 39(8): 0802001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!