光学学报, 2016, 36 (10): 1024001, 网络出版: 2016-10-12   

C3v和C4v金属纳米多颗粒-薄膜系统的Fano共振光谱的群论 下载: 501次

Group Theory of Fano Resonance Spectra in System of C3v and C4v Metallic Multi-Nanoparticles-Thin Film
作者单位
1 南开大学电子信息与光学工程学院现代光学研究所, 天津 300071
2 深圳大学纳米光子学研究中心, 光电工程学院光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
引用该论文

李梦君, 李小明. C3v和C4v金属纳米多颗粒-薄膜系统的Fano共振光谱的群论[J]. 光学学报, 2016, 36(10): 1024001.

Li Mengjun, Li Xiaoming. Group Theory of Fano Resonance Spectra in System of C3v and C4v Metallic Multi-Nanoparticles-Thin Film[J]. Acta Optica Sinica, 2016, 36(10): 1024001.

参考文献

[1] Halas N J. Plasmonics: an emerging field fostered by nano letters[J]. Nano Lett, 2010, 10(10): 3816-3822.

[2] Prodan E, Nordlander P. Plasmon hybridization in spherical nanoparticles[J]. J Chem Phys, 2004, 120(11): 5444-5454.

[3] Nordlander P, Oubre C, Prodan E, et al. Plasmon hybridization in nanoparticle dimers[J]. Nano Lett, 2004, 4(5): 899-903.

[4] Nordlander P, Prodan E. Plasmon hybridization in nanoparticles near metallic surfaces[J]. Nano Lett, 2004, 4(11): 2209-2213.

[5] Papanikolaou N. Optical properties of metallic nanoparticle arrays on a thin metallic film[J]. Phys Rev B, 2007, 75(23): 235426.

[6] Chen J, Ng J, Ding K, et al. Negative optical torque[J]. Sci Rep, 2014, 4: 6386.

[7] Kale M J, Christopher P. Plasmons at the interface[J]. Science, 2015, 349(6284): 587-588.

[8] Tame M S, Mcenery K R, Ozdemir S K, et al. Quantum plasmonics[J]. Nature Phys, 2013, 9: 329-340.

[9] 于杰, 张俊喜, 张立德, 等. 基于Ag纳米棒阵列的表面等离激元微型偏振器[J]. 光学学报, 2014, 34(7): 0723001.

    Yu Jie, Zhang Junxi, Zhang Lide, et al. Surface plasmonic micropolarizers based on Ag nanorod arrays[J]. Acta Optica Sinica, 2014, 34(7): 0723001.

[10] Li X M, Fang H, Weng X Y, et al. Electronic spill-out induced spectral broadening in quantum hybrodynamic nanoplasmonics[J]. Opt Express, 2015, 23(23): 29738-29745.

[11] Brandl D W, Mirin N A, Nordlander P. Plasmon modes of nanosphere trimmers and quadrumers[J]. J Phys Chem B, 2006, 110(25): 12302-12310.

[12] Chuntonov L, Haran G. Trimeric plasmonic molecules: the role of symmetry[J]. Nano Lett, 2011, 11(6): 2440-2445.

[13] Hopkins B, Liu W, Miroshnichenko A E, et al. Optically isotropic responses induced by discrete rotational symmetry of nanoparticle clusters[J]. Nanoscale, 2013, 5(14): 6395-6403.

[14] 黄运欢, 薛保平. 等离子体八聚体中多重法诺共振现象的研究[J]. 激光与光电子学进展, 2015, 52(6): 062401.

    Huang Yunhuan, Xue Baoping. Research of multiple Fano resonances in plasmonic octamer clusters[J]. Laser & Optoelectronics Progress, 2015, 52(6): 062401.

[15] Lei D Y, Fernandez-Dominguez A I, Sonnefraud Y, et al. Revealing plasmonic gap modes in particle-on-film systems using dark-field-spectroscopy[J]. ACS Nano, 2012, 6(2): 1380-1386.

[16] Fan J A, Bao K, Lassiter J B, et al. Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy[J]. Nano Lett, 2012, 12(6): 2817-2821.

[17] Shafiei F, Monticone F, Le K Q, et al. A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance[J]. Nature Nanotech, 2013, 8: 95-99.

[18] 王玥, 王暄, 李龙威. 基于表面等离激元薄膜太阳能电池陷光特性的研究[J]. 激光与光电子学进展, 2015, 52(9): 092401.

    Wang Yue, Wang Xuan, Li Longwei. Properties of light trapping of thin film solar cell based on surface plasmon polaritons[J]. Laser & Optoelectronics Progress, 2015, 52(9): 092401.

[19] Kneipp K, Kneipp H, Itzkan I, et al. Cheminform abstract: Ultrasensitive chemical analysis by Raman spectroscopy[J]. Chem Rev, 1999, 99(10): 2957-2976.

[20] Zhang W H, Fischer H, Schmid T, et al. Mode-selective surface-enhanced Raman spectroscopy using nanpfabricated plasmonic dipole antennas[J]. J Phys Chem C, 2009, 113(33): 14672-14675.

[21] Nishijima Y, Rosa L, Juodkazis S. Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting[J]. Opt Express, 2012, 20(10):11466-11477.

[22] Anker J N, Hall W P, Lyandres O,et al. Biosensing with plasmonic nanosensors[J]. Nature Materi, 2008, 7(6): 442-453.

[23] Halas N J, Lal S, Chang W S, et al. Plasmons in strongly coupled metallic nanostructures[J]. Chem Rev, 2011, 111(6): 3913-3961.

[24] Hirsch L R, Stafford R J, Bankson J A, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. PNAS, 2003, 100(23): 13549-13554.

[25] Yan B, Boriskina S V, Reinhard B M. Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing[J]. J Phy Chem C Nanometer Interfaces, 2011, 115(50): 24437-24453.

[26] Thomas M, Pierre-Michel A, Gaetan L. Coupling between plasmonic films and nanostructures: from basics to applications[J]. Nanophoto, 2015, 4(3): 361-382.

[27] Aravind P K, Metiu H. The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure: applications to surface enhanced spectroscopy[J]. Surface Science, 1983, 124(2-3): 506-528.

[28] Holland W R, Hall D G. Frequency shifts of an electric-dipole resonance near a conducting surface[J]. Phys Rev Lett, 1984, 52(19): 1041-1044.

[29] Stuart H R, Hall D G. Enhanced dipole-dipole interaction between elementary radiators near a surface[J]. Phys Rev Lett, 1998, 80(25): 5663-5666.

[30] de Garcia Abajo F J. Colloquium: light scattering by particle and hole arrays[J]. Rev Mod Phys, 2007, 79(4): 1267-1290.

[31] Vernon K C, Funston A M, Novo C, et al. Influence of particle-substrate interaction on localized plasmon resonances[J]. Nano Lett, 2010, 10(6): 2080-2086.

[32] Campione S, Guclu C, Ragan R, et al. Enhanced magnetic and electric fields via Fano resonances in metasurfaces of circular clusters of plasmonic nanoparticles[J]. ACS Photonics, 2014, 1(3): 254-260.

[33] Gilbertson A M, Francescato Y, Roschuk T, et al. Plasmon-induced optical anisotropy in hybrid grapheme-metal nanoparticle systems[J]. Nano Lett, 2015, 15(5): 3458-3464.

[34] Nicolas R, Leveque G, Marae-Djouda J, et al. Plasmonic mode interferences and Fano resonances in metal-insulator-metal nanostructured interface[J]. Sci Rep, 2015, 5: 14419.

[35] Lukyanchuk B, Zheludev N I, Maier S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materi, 2010, 9: 707-715.

[36] 李梦君, 方晖, 李小明, 等. D3h和D4h等离激元超分子的Fano共振光谱的子集合分解解释[J]. 物理学报, 2016, 65(5): 057302.

    Li Mengjun, Fang Hui, Li Xiaoming, et al. Subgroup decomposition analyses of D3h and D4h plsamonic metamolecule Fano resonance spectrum[J]. Acta Physica Sinica, 2016, 65(5): 057302.

[37] Rahmani M, Lei D Y, Giannini V, et al. Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape[J]. Nano Lett, 2012, 12(4): 2101-2106.

[38] Frimmer M, Coenen T, Koenderink A F. Signature of a Fano resonance in a plasmonic metamolecule′s local density of optical states[J]. Phys Rev Lett, 2012, 108(7): 077404.

[39] Hopkins B, Poddubny A N, Miroshnichenko A E, et al. Revisiting the physics of Fano resonances for nanoparticle oligomers[J]. Phys Rev A, 2013, 88(5): 053819.

[40] Gomez D E, Vernon K C, Davis T J. Symmetry effects on the optical coupling between plasmonic nanoparticles with applications to hierarchical structures[J]. Phys Rev B, 2010, 81(7): 075414.

[41] Rahmani M, Lukiyanchuk B, Tahmasebi T, et al. Polarization-controlled spatial localization of near-field energy in planar symmetric coupled oligomers[J]. Appl Phys A, 2012, 107(1): 23-30.

李梦君, 李小明. C3v和C4v金属纳米多颗粒-薄膜系统的Fano共振光谱的群论[J]. 光学学报, 2016, 36(10): 1024001. Li Mengjun, Li Xiaoming. Group Theory of Fano Resonance Spectra in System of C3v and C4v Metallic Multi-Nanoparticles-Thin Film[J]. Acta Optica Sinica, 2016, 36(10): 1024001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!