光学学报, 2016, 36 (10): 1024001, 网络出版: 2016-10-12   

C3v和C4v金属纳米多颗粒-薄膜系统的Fano共振光谱的群论 下载: 501次

Group Theory of Fano Resonance Spectra in System of C3v and C4v Metallic Multi-Nanoparticles-Thin Film
作者单位
1 南开大学电子信息与光学工程学院现代光学研究所, 天津 300071
2 深圳大学纳米光子学研究中心, 光电工程学院光电子器件与系统教育部/广东省重点实验室, 广东 深圳 518060
摘要
针对C3v和C4v对称构型金属纳米多颗粒-薄膜系统的Fano共振光谱低谷的产生机理,运用群论的方法给出了详细的推导。在前期研究成果的基础上,分析证实了当线偏振光电场沿多颗粒所在平面入射时,Cnv对称构型多颗粒-薄膜系统共有4个满足相同不可约表示的E模式:在多颗粒所在平面内只有3个局域表面等离激元电偶极矩共振对称模式,其中2个模式位于外围环形多颗粒中,中心颗粒单独具有1个模式,这与Dnh对称构型多颗粒系统的电偶极矩分布完全相同;另外1个模式虽满足对称性相同的要求,但其电偶极矩的方向垂直于多颗粒所在的平面。Cnv点群和Dnh点群虽然具有相同的光谱线型,但是薄膜基底的存在会使光谱谷(峰)产生一定的红移或蓝移,这就为设计金属纳米多颗粒-薄膜系统的光学性质及其广泛应用提供了一定的参考。
Abstract
The mechanism of Fano resonance spectrum dip resulting from the system of symmetric metallic multi-nanoparticles-thin film belonging to C3v and C4v is deduced in detail using group theory. Based on previous research achievements, it is verified that there are only four E modes meet with the same irreducible representation in the system of Cnv symmetric multi-particles-thin film, when the linearly polarized light electric field inputs along the multi-particles plane. There are only three local surface plasmon electric dipole moment resonance symmetry modes in the multi-particles plane, and among them, the periphery ring-multiparticles own two, the central particle own one. These results are completely the same with electric dipole moment distribution of Dnh symmetry multiparticles system. The direction of the electric dipolar moments of the rest one is perpendicular to the multi-particles plane although it satisfies the requirement of the same symmetry. In addition, Cnv and Dnh point groups hold the same spectrum linetype, however, there is some redshift or blueshift of spectrum dip (peak) if the thin film base exists. This work can provide some references for designing the optical properties and its extended applications about the system of metallic multi-nanoparticles-thin film.
参考文献

[1] Halas N J. Plasmonics: an emerging field fostered by nano letters[J]. Nano Lett, 2010, 10(10): 3816-3822.

[2] Prodan E, Nordlander P. Plasmon hybridization in spherical nanoparticles[J]. J Chem Phys, 2004, 120(11): 5444-5454.

[3] Nordlander P, Oubre C, Prodan E, et al. Plasmon hybridization in nanoparticle dimers[J]. Nano Lett, 2004, 4(5): 899-903.

[4] Nordlander P, Prodan E. Plasmon hybridization in nanoparticles near metallic surfaces[J]. Nano Lett, 2004, 4(11): 2209-2213.

[5] Papanikolaou N. Optical properties of metallic nanoparticle arrays on a thin metallic film[J]. Phys Rev B, 2007, 75(23): 235426.

[6] Chen J, Ng J, Ding K, et al. Negative optical torque[J]. Sci Rep, 2014, 4: 6386.

[7] Kale M J, Christopher P. Plasmons at the interface[J]. Science, 2015, 349(6284): 587-588.

[8] Tame M S, Mcenery K R, Ozdemir S K, et al. Quantum plasmonics[J]. Nature Phys, 2013, 9: 329-340.

[9] 于杰, 张俊喜, 张立德, 等. 基于Ag纳米棒阵列的表面等离激元微型偏振器[J]. 光学学报, 2014, 34(7): 0723001.

    Yu Jie, Zhang Junxi, Zhang Lide, et al. Surface plasmonic micropolarizers based on Ag nanorod arrays[J]. Acta Optica Sinica, 2014, 34(7): 0723001.

[10] Li X M, Fang H, Weng X Y, et al. Electronic spill-out induced spectral broadening in quantum hybrodynamic nanoplasmonics[J]. Opt Express, 2015, 23(23): 29738-29745.

[11] Brandl D W, Mirin N A, Nordlander P. Plasmon modes of nanosphere trimmers and quadrumers[J]. J Phys Chem B, 2006, 110(25): 12302-12310.

[12] Chuntonov L, Haran G. Trimeric plasmonic molecules: the role of symmetry[J]. Nano Lett, 2011, 11(6): 2440-2445.

[13] Hopkins B, Liu W, Miroshnichenko A E, et al. Optically isotropic responses induced by discrete rotational symmetry of nanoparticle clusters[J]. Nanoscale, 2013, 5(14): 6395-6403.

[14] 黄运欢, 薛保平. 等离子体八聚体中多重法诺共振现象的研究[J]. 激光与光电子学进展, 2015, 52(6): 062401.

    Huang Yunhuan, Xue Baoping. Research of multiple Fano resonances in plasmonic octamer clusters[J]. Laser & Optoelectronics Progress, 2015, 52(6): 062401.

[15] Lei D Y, Fernandez-Dominguez A I, Sonnefraud Y, et al. Revealing plasmonic gap modes in particle-on-film systems using dark-field-spectroscopy[J]. ACS Nano, 2012, 6(2): 1380-1386.

[16] Fan J A, Bao K, Lassiter J B, et al. Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy[J]. Nano Lett, 2012, 12(6): 2817-2821.

[17] Shafiei F, Monticone F, Le K Q, et al. A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance[J]. Nature Nanotech, 2013, 8: 95-99.

[18] 王玥, 王暄, 李龙威. 基于表面等离激元薄膜太阳能电池陷光特性的研究[J]. 激光与光电子学进展, 2015, 52(9): 092401.

    Wang Yue, Wang Xuan, Li Longwei. Properties of light trapping of thin film solar cell based on surface plasmon polaritons[J]. Laser & Optoelectronics Progress, 2015, 52(9): 092401.

[19] Kneipp K, Kneipp H, Itzkan I, et al. Cheminform abstract: Ultrasensitive chemical analysis by Raman spectroscopy[J]. Chem Rev, 1999, 99(10): 2957-2976.

[20] Zhang W H, Fischer H, Schmid T, et al. Mode-selective surface-enhanced Raman spectroscopy using nanpfabricated plasmonic dipole antennas[J]. J Phys Chem C, 2009, 113(33): 14672-14675.

[21] Nishijima Y, Rosa L, Juodkazis S. Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting[J]. Opt Express, 2012, 20(10):11466-11477.

[22] Anker J N, Hall W P, Lyandres O,et al. Biosensing with plasmonic nanosensors[J]. Nature Materi, 2008, 7(6): 442-453.

[23] Halas N J, Lal S, Chang W S, et al. Plasmons in strongly coupled metallic nanostructures[J]. Chem Rev, 2011, 111(6): 3913-3961.

[24] Hirsch L R, Stafford R J, Bankson J A, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. PNAS, 2003, 100(23): 13549-13554.

[25] Yan B, Boriskina S V, Reinhard B M. Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing[J]. J Phy Chem C Nanometer Interfaces, 2011, 115(50): 24437-24453.

[26] Thomas M, Pierre-Michel A, Gaetan L. Coupling between plasmonic films and nanostructures: from basics to applications[J]. Nanophoto, 2015, 4(3): 361-382.

[27] Aravind P K, Metiu H. The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure: applications to surface enhanced spectroscopy[J]. Surface Science, 1983, 124(2-3): 506-528.

[28] Holland W R, Hall D G. Frequency shifts of an electric-dipole resonance near a conducting surface[J]. Phys Rev Lett, 1984, 52(19): 1041-1044.

[29] Stuart H R, Hall D G. Enhanced dipole-dipole interaction between elementary radiators near a surface[J]. Phys Rev Lett, 1998, 80(25): 5663-5666.

[30] de Garcia Abajo F J. Colloquium: light scattering by particle and hole arrays[J]. Rev Mod Phys, 2007, 79(4): 1267-1290.

[31] Vernon K C, Funston A M, Novo C, et al. Influence of particle-substrate interaction on localized plasmon resonances[J]. Nano Lett, 2010, 10(6): 2080-2086.

[32] Campione S, Guclu C, Ragan R, et al. Enhanced magnetic and electric fields via Fano resonances in metasurfaces of circular clusters of plasmonic nanoparticles[J]. ACS Photonics, 2014, 1(3): 254-260.

[33] Gilbertson A M, Francescato Y, Roschuk T, et al. Plasmon-induced optical anisotropy in hybrid grapheme-metal nanoparticle systems[J]. Nano Lett, 2015, 15(5): 3458-3464.

[34] Nicolas R, Leveque G, Marae-Djouda J, et al. Plasmonic mode interferences and Fano resonances in metal-insulator-metal nanostructured interface[J]. Sci Rep, 2015, 5: 14419.

[35] Lukyanchuk B, Zheludev N I, Maier S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materi, 2010, 9: 707-715.

[36] 李梦君, 方晖, 李小明, 等. D3h和D4h等离激元超分子的Fano共振光谱的子集合分解解释[J]. 物理学报, 2016, 65(5): 057302.

    Li Mengjun, Fang Hui, Li Xiaoming, et al. Subgroup decomposition analyses of D3h and D4h plsamonic metamolecule Fano resonance spectrum[J]. Acta Physica Sinica, 2016, 65(5): 057302.

[37] Rahmani M, Lei D Y, Giannini V, et al. Subgroup decomposition of plasmonic resonances in hybrid oligomers: modeling the resonance lineshape[J]. Nano Lett, 2012, 12(4): 2101-2106.

[38] Frimmer M, Coenen T, Koenderink A F. Signature of a Fano resonance in a plasmonic metamolecule′s local density of optical states[J]. Phys Rev Lett, 2012, 108(7): 077404.

[39] Hopkins B, Poddubny A N, Miroshnichenko A E, et al. Revisiting the physics of Fano resonances for nanoparticle oligomers[J]. Phys Rev A, 2013, 88(5): 053819.

[40] Gomez D E, Vernon K C, Davis T J. Symmetry effects on the optical coupling between plasmonic nanoparticles with applications to hierarchical structures[J]. Phys Rev B, 2010, 81(7): 075414.

[41] Rahmani M, Lukiyanchuk B, Tahmasebi T, et al. Polarization-controlled spatial localization of near-field energy in planar symmetric coupled oligomers[J]. Appl Phys A, 2012, 107(1): 23-30.

李梦君, 李小明. C3v和C4v金属纳米多颗粒-薄膜系统的Fano共振光谱的群论[J]. 光学学报, 2016, 36(10): 1024001. Li Mengjun, Li Xiaoming. Group Theory of Fano Resonance Spectra in System of C3v and C4v Metallic Multi-Nanoparticles-Thin Film[J]. Acta Optica Sinica, 2016, 36(10): 1024001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!