光谱学与光谱分析, 2014, 34 (2): 354, 网络出版: 2015-01-13  

水性涂料施工过程中微观结构的FTIR研究

IFTIR Study on the Micro-Structure in the Construction Process of Water-Borne Coatings
作者单位
1 南京林业大学艺术设计学院, 江苏 南京210037
2 中国矿业大学化工学院, 江苏 徐州221116
3 中国矿业大学艺术设计学院, 江苏 徐州221116
摘要
以市售立邦水性涂料作为研究对象, 溶剂水作为变量因子。 配制不同水料比的涂料系列样品, 分别用FTIR/ATR、 FTIR/漫反射光谱表征湿料、 涂膜的微观结构特征, 湿料抽滤得到的固型物用FTIR/漫反射光谱表征。 分析其官能团变化情况, 研究施工过程, 溶剂对涂膜的影响。 结果显示: 随着加水量的增加, 湿料的FTIR/ATR光谱中, 1 727 cm-1对应的羰基吸收峰, 逐渐转为肩峰, 871 cm-1吸收峰发生蓝移, 峰强度逐渐减弱; 涂膜的漫反射红外图谱, 3 400 cm-1的—OH吸收峰、 3 030 cm-1不饱和—CH吸收峰强度逐渐变弱, 2 962和2871 cm-1的甲基和亚甲基的吸收峰强度逐渐增强, 2 516 cm-1吸收峰位移至2 603 cm-1形成肩峰, 1 647 cm-1吸收峰逐渐位移至1 455 cm-1, 1 107 cm-1对应的C—O伸缩振动吸收峰发生红移。 在水性涂料施工过程中, 溶剂水与涂料分子间存在相互作用, 对涂层分子中电子云的密度分布有显著的影响, 此结果对涂料的生产及施工有参考意义。
Abstract
borne paint was studied in the article in which the solvent water was regarded as a variable factor. A series of paint samples with different percentage of water were configured before observing their storage performance and microstructures by using Fourier-transform infrared (FTIR) ATR (attenuated total reflection) spectroscopy and diffuse reflectance (DF) FTIR spectroscopy. The effects of construction process and solvent water on the coating film were examined through analyzing the changes of internal functional groups before and after coating. The results indicated that as the amount of solvent water was increased, the characteristic peak of νCO in 1 727 cm-1 turned into acromion, the absorption peak in 871 cm-1 was blue shifted, the intensity of the peak of hydroxyl (νOH) in 3 400 cm-1 and unsaturated absorption peak of ν—CH in 3 030 cm-1 gradually weakened, the absorption peaks strengths of ν—CH3 and ν—CH2 in 2 962 and 2 871 cm-1 increased, respectively. The absorption peak in 2 516 cm-1 was shifted to 2 603 cm-1 then form the acromion, the absorption peak of 1 647 cm-1 gradually changed to 1 455 cm-1, the stretching vibration absorption peak of νC—O in 1 107 cm-1 was red-shifted. During the coating process of paint, the solvent water and paint molecules interacted with each other, having a significant impact on the electron cloud density distribution of the paint molecules. The results obtained in the article have an important significance for the production and construction of paint.
参考文献

[1] DU Jian-wei, FAN Yun-peng(杜建伟, 范云鹏). Moden Paint & Finishing(现代涂料与涂装), 2011, 14(9): 11.

[2] YAN Fu-an(闫福安). Water-based resin and water-borne coatings(水性树脂与水性涂料). Beijing: Chemical Industry Press(北京: 化学工业出版社). 2005.

[3] QI Yao(姚齐). Chenmical Intermediate(化工中间体), 2011, (12): 14.

[4] SONG Bei-bei, BAO Chun-lei, WANG Lian-shi, et al(宋蓓蓓, 包春磊, 王炼石, 等). Paint & Coatings Industy(涂料工业), 2011, 41(10): 15.

[5] LIAO Fen, ZENG Xing-rong, LI Hong-qiang, et al(廖芬, 曾兴荣, 李洪强, 等). Journal of Central South University(中南大学学报), 2012, (9): 911.

[6] ZHANG Dong-yang, ZHU Dong, WANG Mu-li, et al(张东阳, 朱东, 王牧力, 等). China Coatings(中国涂料), 2011, 26(9): 14.

[7] Zhang Ying, Asa Barber, James Maxted, et al. Progress in Organic Coatings, 2013, 76: 131.

[8] Zhang W R, Loweb C, Smith R. Progress in Organic Coatings, 2009, 65: 469.

[9] Zhang Ying, James Maxted, Asa Barber, et al. Polymer Degradation and Stability, 2013, 98: 527.

[10] Laetitia Philippe, Chris Sammon, Stuart B Lyon, et al. Progress in Organic Coatings, 2004, 49: 302.

[11] Nicole Branan, Todd A Wells. Vibrational Spectroscopy, 2007, 44: 192.

[12] WENG Shi-fu(翁诗甫). Fourier Transformation Infrared Spectrograph(傅里叶变换红外光谱仪). Beijing: Chemical Industry Press(北京: 化学工业出版社). 2005.

陈航, 骆文, 管雪松, 李洪建, 谭锐, 尹文萱. 水性涂料施工过程中微观结构的FTIR研究[J]. 光谱学与光谱分析, 2014, 34(2): 354. CHEN Hang, LUO Wen, GUAN Xue-song, LI Hong-jian, TAN Rui, YIN Wen-xuan. IFTIR Study on the Micro-Structure in the Construction Process of Water-Borne Coatings[J]. Spectroscopy and Spectral Analysis, 2014, 34(2): 354.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!