红外, 2020, 41 (11): 1, 网络出版: 2021-02-05  

太赫兹空气相干探测技术研究进展

Research Progress of Terahertz Air Coherent Detection Technique
作者单位
1 南昌航空大学无损检测技术教育部重点实验室,江西 南昌 330063
2 南昌航空大学测试与光电工程学院,江西 南昌 330063
摘要
太赫兹空气相干探测技术是一种宽带太赫兹探测技术。由于探测带宽仅受到探测激光脉冲宽度的影响,该技术的响应范围能够达到几十太赫兹,因此在实验上研发成功之后便成为了太赫兹技术领域一项重要的探测技术。详细介绍了太赫兹空气相干探测技术的实验原理和实验光路,总结了该技术最近几年的研究进展及改进措施,并对其探测性能和使用特点进行了分析与讨论。该研究可对初步使用太赫兹空气相干探测技术起到很好的参考作用。
Abstract
The terahertz air coherent detection technology is a broadband terahertz detection technology. Since the detection bandwidth is only affected by the pulse width of the probe laser, the response range of this technology can reach tens of terahertz, so after successful experimental research, it has become an important detection technology in the field of terahertz technology. The experimental principle and experimental optical path of the terahertz air coherent detection technology are introduced in detail, the research progress and improvement measures of the technology in recent years are summarized, and its detection performance and use characteristics are analyzed and discussed. This research can provide a good reference for the preliminary use of terahertz air coherent detection technology.
参考文献

[1] Mittleman D. Perspective: Terahertz Science and Technology [J]. Journal of Applied Physics, 2017, 122(23): 230901.

[2] Dhillon S, Vitiello M, Linfield E, et al. The 2017 Terahertz Science and Technology Roadmap [J]. Journal of Physics D: Applied Physics, 2017, 50(4): 043001.

[3] 符张龙, 李锐志, 李弘义, 等. 基于太赫兹量子级联激光器的生物医学成像研究进展 [J]. 中国激光, 2020, 47(2): 0207014.

[4] Wan M, Healy J, Sheridan J. Terahertz Phase Imaging and Biomedical Applications [J]. Optics and Laser Technology, 2020, 122: 105859.

[5] 张存林. 太赫兹感测与成像 [M]. 北京: 国防工业出版社, 2008.

[6] Sizov F, Rogalski A. THz Detectors [J]. Progress in Quantum Electronics, 2010, 34: 278-347.

[7] 金飙兵, 单文磊, 郭旭光, 等. 太赫兹检测技术 [J]. 物理, 2011, 42(11): 770-780.

[8] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器 [J]. 物理学报, 2018, 67(9): 090702.

[9] Cook D, Chen J, Morlino E, et al. Terahertz-field-induced Second-harmonic Generation Measurements of Liquid Dynamics [J]. Chemical Physics Letters, 1999, 309(3): 221-228.

[10] Dai J M, Xie X, Zhang X C. Detection of Broadband Terahertz Waves with a Laser-induced Plasma in Gases [J]. Physics Review Letters, 2006, 97(10): 103903.

[11] 戴建明, 谢旭, 张希成. 利用空气来探测脉冲太赫兹波 [J]. 物理, 2007, 36(3): 191-194.

[12] Karpowicz N, Dai J M, Lu X, et al. Coherent Heterodyne Time-domain Spectroscopy Covering the Entire “Terahertz Gap” [J]. Applied Physics Letters, 2008, 92(1): 011131.

[13] Dai J M, Clough B, Ho I C, et al. Recent Progress in Terahertz Wave Air Photonics [J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 274-281.

[14] Du H W, Tang F, Zhang D Y, et al. Calibration of the Field Strength of Broadband Terahertz Radiation in Air Coherent Detection Technique [J]. Journal of Applied Physics, 2018, 124(14): 143101.

[15] Borodin A, Esaulkov M, Frolov A, et al. Possibility of Direct Estimation of Terahertz Pulse Electric Field [J]. Optics Letters, 2014, 39(14): 4092-4095.

[16] Reimann K. Table-top Sources of Ultrashort THz Pulses [J]. Reports on Progress in Physics, 2007, 70(10): 1597-1632.

[17] Jepsen P, Jacobsen R, Keiding S. Generation and Detection of Terahertz Pulses from Biased Semiconductor Antennas [J]. Journal of Optical Society of America B, 1996, 13(11): 2424-2436.

[18] Gallot G, Zhang J, McGowan R, et al. Measurements of the THz Absorption and Dispersion of ZnTe and Their Relevance to the Electro-optic Detection of THz Radiation [J]. Applied Physics Letters, 1999, 74(23): 3450-3452.

[19] Du H W. Investigation on Response Function of Terahertz Air Coherent Detection Technique [J]. Applied Physics B, 2020, 126(7): 124.

[20] Hassan M T, Luu T T, Moulet A, et al. Optical Attosecond Pulses and Tracking the Nonlinear Response of Bound Electrons [J]. Nature, 2016, 530: 66-70.

[21] Tomasino A, Mazhorova A, Clerici M, et al. Solid-state-biased Coherent Detection of Ultra-broadband Terahertz Pulses [J]. Optica, 2017, 4(11): 1358-1362.

[22] Lv X F, Zhang X C. Balanced Terahertz Wave Air-biased-coherent-detection [J]. Applied Physics Letters, 2011, 98(15): 151111.

[23] Lv Z H, Zhang D, Meng C, et al. Polarization-sensitive Air-biased-coherent-detection for Terahertz Wave [J]. Applied Physics Letters, 2012, 101(8): 081119.

[24] Lv X F, Karpowicz N, Zhang X C. Broadband Terahertz Detection with Selected Gases [J]. Journal of Optical Society of America B, 2009, 26(9): A66-A73.

[25] Wang T W, Iwaszczuk K, Wrisberg E, et al. Linearity of Air-biased Coherent Detection for Terahertz Time-domain Spectroscopy [J]. Journal of Infrared Millimeter and Terahertz Waves, 2016, 37(6): 592-604.

[26] Li C Y, Seletskiy D, Yang Z, et al. Broadband Field-resolved Terahertz Detection via Laser Induced Air Plasma with Controlled Optical Bias [J]. Optics Express, 2015, 23(9): 11436-11443.

[27] Du H W, Dong J M, Liu Y, et al. A Coherent Detection Technique via Optically Biased Field for Broadband Terahertz Radiation [J]. Review of Scientific Instruments, 2017, 88(9): 093104.

[28] Du H W. Systematical Study on the Role of Laser Second Harmonic Generation in the Terahertz air Coherent Detection [J]. Optics and Laser Technology, 2020, 130: 106312.

[29] Ulbricht R, Hendry E, Shan J, et al. Carrier Dynamics in Semiconductors Studied with Time-resolved Terahertz Spectroscopy [J]. Reviews of Modern Physics, 2011, 83(2): 543-586.

[30] 刘宏翔, 姚建铨, 王与烨, 等. 太赫兹波近场成像综述 [J]. 红外与毫米波学报, 2016, 35(3): 300-376.

[31] 刘尚建, 余菲, 李凯, 等. 太赫兹光谱与成像在生物医学领域中的应用[J]. 物理, 2013, 42(11): 788-793.

杜海伟, 朱思源, 吕金, 刘君威, 陈凤仪. 太赫兹空气相干探测技术研究进展[J]. 红外, 2020, 41(11): 1. DU Hai-wei, ZHU Si-yuan, LV Jin, LIU Jun-wei, CHEN Feng-yi. Research Progress of Terahertz Air Coherent Detection Technique[J]. INFRARED, 2020, 41(11): 1.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!