光学学报, 2016, 36 (3): 0326002, 网络出版: 2016-03-03   

椭圆环光阑对径向偏振光聚焦研究的影响

Effect of the Elliptic Annular Aperture on the Focusing of Radially Polarized Beam
作者单位
1 贵州民族大学贵州省普通高等学校绿色节能材料特色重点实验室, 贵州 贵阳 550025
2 浙江理工大学理学院, 浙江 杭州 310018
3 贵州民族大学理学院, 贵州 贵阳 550025
摘要
柱坐标下的径向偏振矢量光束在被高数值孔径透镜聚焦时,在紧聚焦条件下相比线偏振和圆偏振光束通过透镜后能获得较小的聚焦斑。在聚焦透镜前加上椭圆环光阑后能强化在聚焦区域内的光场轴向分量,能在单一方向上进一步缩小聚焦斑的尺寸。研究了径向偏振矢量光束经过椭圆环形光阑后的聚焦特性,在聚焦区域径向偏振分量形成两个聚焦瓣,而轴向分量形成椭圆形的聚焦斑,并做了相应的物理解释。当增加椭圆环形光阑内环半径时,径向偏振分量的聚焦瓣和轴向分量的聚焦斑单一方向聚焦尺寸均可小于光波长的三分之一,当进一步提高椭圆环形光阑内环半径时,由于通光量减少和衍射效应,不能得到更小的聚焦尺寸。研究结果对于提高激光扫描显微镜的单向分辨率具有重要意义。
Abstract
When the radial polarization vector beam is focused by a high numerical aperture lens, compared with the linear polarization light and the circular polarized light cases, a smaller focused spot can be obtained by the radial polarization vector beam. An elliptic annular aperture can enhance the axial component of light in the focus area. So the focus spot size can be further reduced in one direction. The focusing characteristics of the radial polarization vector beam passing through an elliptic annular aperture are studied. Two focusing lobes are obtained by the radial polarization component of light. An elliptical focusing spot is obtained by the axial component of light and the corresponding physical explanation is given. When the inner radius increases, the focus size of the focusing spot and focusing lobes can be less than one third of the wavelength in one direction. When the inner ring radius of the elliptic annular aperture is further improved, a smaller focus size of light can’t be obtained as the decrease of light and the diffraction effect. The results of the study are important for improving one direction resolution of laser scanning microscope.
参考文献

[1] Xie Xiangsheng, Chen Yongzhu, Yang Ken, et al.. Harnessing the point-spread function for high-resolutionfar-field optical microscopy [J]. Phys Rev Lett, 2014, 113(26): 263901.

[2] L E Helseth. Roles of polarization, phase and amplitude in solid immersion lens systems[J]. Opt Commun, 2001, 191(3-6): 161-172.

[3] C C Sun, C K Liu. Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation[J]. Opt Lett, 2003, 28(2): 99-101.

[4] H Wang, L Shi, B Lukyanchuk, et al.. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nat Photonics, 2008, 2(8): 501-505.

[5] C J R Sheppard, S Mehta. Three-level filter for increased depth of focus and Bessel beam generation[J]. Opt Express, 2012, 20(25): 27212- 27221.

[6] Chen Yikai, Zhang Douguo, Han Lu, et al.. Surface-plasmon-coupled emission microscopy with a polarization converter[J]. Opt Lett, 2013, 38(5): 736-738.

[7] X L Wang, J Chen, Y N Li, et al.. Optical orbital angular momentum from the curl of polarization[J]. Phys Rev Lett, 2010, 105(25): 253602.

[8] Yang Liangxin, Xie Xiangsheng, Wang Sicong, et al.. Minimized spot of annular radially polarized focusing beam[J]. Opt Lett, 2013, 38 (8): 1331-1333.

[9] R Dorn, S Quabis, G Leuchs. Sharper focus for a radially polarized light beam[J]. Phys Rev Lett, 2003, 91(23): 233901.

[10] K Kitamura, K Sakai, S Noda. Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam[J]. Opt Express, 2010, 18(5): 4518-4525.

[11] Li Peng, Liu Sheng, Xie Gaofeng, et al.. Modulation mechanism of multi-azimuthal masks on the redistributions of focused azimuthally polarized beams[J]. Opt Express, 2015, 23(6): 7131-7139.

[12] Y Kozawa, S Sato. Numerical analysis of resolution enhancement inlaser scanning microscopy using a radially polarized beam[J]. Opt Express, 2015, 23(3): 2076-2084.

[13] 陈国钧, 周巧巧, 纪宪明, 等. π相位板产生矢量光束的高数值孔径聚焦特性研究[J]. 光学学报, 2014, 34(12): 1226001.

    Chen Guojun, Zhou Qiaoqiao, Ji Xianming, et al.. Study on high-numerical-aperture-focused characteristics of vector beam produced by π phase plate[J]. Acta Optica Sinica, 2014, 34(12): 1226001.

[14] 刘雪宁, 王吉明, 赫崇君, 等. 不同数值孔径下调控矢量光束聚焦场的反向构建[J]. 光学学报, 2014, 34(1): 0114004.

    Liu Xuening, Wang Jiming, He Chongjun, et al.. Backward focus engineering with controlled cylindrical vector beams under different numerical apertures[J]. Acta Optica Sinica, 2014, 34(1): 0114004.

[15] 刘键, 杨艳芳, 何英等. 基于圆偏振涡旋光束强聚焦的平顶光束的构成[J]. 光学学报, 2014, 34(5): 0526003.

    Liu Jian, Yang Yanfang, He Ying, et al.. Flattop beam creation based on strong focusing of circularly polarized vortex beams[J]. Acta Optica Sinica, 2014, 34(5): 0526003.

[16] K S Youngworth, T G Brown. Focusing of high numerical aperture cylindrical-vector beams[J]. Opt Express, 2000, 7(2): 77-87.

蔡勋明, 赵晶云, 范梦慧, 罗姣莲. 椭圆环光阑对径向偏振光聚焦研究的影响[J]. 光学学报, 2016, 36(3): 0326002. Cai Xunming, Zhao Jingyun, Fan Menghui, Luo Jiaolian. Effect of the Elliptic Annular Aperture on the Focusing of Radially Polarized Beam[J]. Acta Optica Sinica, 2016, 36(3): 0326002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!