中国激光, 2019, 46 (8): 0802006, 网络出版: 2019-08-13   

激光熔覆温度场和CeO2、TiO2对材料相变的影响 下载: 1043次

Effects of Temperature Field and CeO2/TiO2 on Material Phase Transition in Laser Cladding
作者单位
1 江南大学机械工程学院, 江苏 无锡 214122
2 江苏省食品先进制造装备技术重点实验室, 江苏 无锡 214122
引用该论文

任仲贺, 武美萍, 崔宸, 夏思海. 激光熔覆温度场和CeO2、TiO2对材料相变的影响[J]. 中国激光, 2019, 46(8): 0802006.

Zhonghe Ren, Meiping Wu, Chen Cui, Sihai Xia. Effects of Temperature Field and CeO2/TiO2 on Material Phase Transition in Laser Cladding[J]. Chinese Journal of Lasers, 2019, 46(8): 0802006.

参考文献

[1] 徐滨士. 中国再制造工程及其进展[J]. 中国表面工程, 2010, 23(2): 1-6.

    Xu B S. Remanufacture engineering and its development in China[J]. China Surface Engineering, 2010, 23(2): 1-6.

[2] Wei S G, Cheng D B, Sundin E, et al. Motives and barriers of the remanufacturing industry in China[J]. Journal of Cleaner Production, 2015, 94: 340-351.

[3] Tseng W C, Aoh J N. Simulation study on laser cladding on preplaced powder layer with a tailored laser heat source[J]. Optics & Laser Technology, 2013, 48: 141-152.

[4] 李建忠, 黎向锋, 左敦稳, 等. 7050铝合金表面Al/Ti激光熔覆工艺实验及温度场模拟分析[J]. 激光与光电子学进展, 2014, 51(12): 121403.

    Li J Z, Li X F, Zuo D W, et al. Process test and temperature field simulation of the Al/Ti laser cladding coating above 7050 aluminum alloy[J]. Laser & Optoelectronics Progress, 2014, 51(12): 121403.

[5] Boutalbi N, Bouaziz M N, Allouche M. Influence of temperature-dependent absorptivity on solid surface heated by CO2 and Nd∶YAG lasers[J]. Journal of Laser Applications, 2016, 28(3): 032004.

[6] Farahmand P, Kovacevic R. An experimental-numerical investigation of heat distribution and stress field in single- and multi-track laser cladding by a high-power direct diode laser[J]. Optics & Laser Technology, 2014, 63: 154-168.

[7] 孙琳, 位超群, 隋欣梦, 等. SiC颗粒尺寸对TiNi基熔覆层组织与性能的影响[J]. 中国激光, 2018, 45(5): 0502002.

    Sun L, Wei C Q, Sui X M, et al. Effects of SiC particle size on microstructures and properties of TiNi based cladding layers[J]. Chinese Journal of Lasers, 2018, 45(5): 0502002.

[8] 肖轶, 顾剑锋, 张俊喜, 等. 纳米CeO2对激光熔覆Fe/Cr3C2复合涂层组织与磨损性能的影响[J]. 材料导报, 2017, 31(22): 65-69, 84.

    Xiao Y, Gu J F, Zhang J X, et al. Effects of nano-CeO2 doping on microstructure and wear performance of laser-clad Fe/Cr3 C2 alloy composite coating[J]. Materials Review, 2017, 31(22): 65-69, 84.

[9] Bax B, Schäfer M, Pauly C, et al. Coating and prototyping of single-phase iron aluminide by laser cladding[J]. Surface and Coatings Technology, 2013, 235: 773-777.

[10] 黄延禄, 温宝贤, 黄铭. 激光熔覆加工温度场特征与凝固组织形成[J]. 应用激光, 2017, 37(5): 629-633.

    Huang Y L, Wen B X, Huang M. Characteristics of the temperature field and formation of the microstructure for laser cladding processing[J]. Applied Laser, 2017, 37(5): 629-633.

[11] 张光耀, 王成磊, 高原. 稀土CeO2在6063Al表面Ni基激光熔覆中的作用机制[J]. 稀有金属材料与工程, 2016, 45(4): 1003-1007.

    Zhang G Y, Wang C L, Gao Y. Mechanism of rare earth CeO2 on the Ni-based laser cladding layer of 6063Al surface[J]. Rare Metal Materials and Engineering, 2016, 45(4): 1003-1007.

[12] 吴东江, 陈云啸, 卢卫锋, 等. 钛合金表面直接激光熔覆Al2O3-13%TiO2涂层互熔稀释特性[J]. 稀有金属材料与工程, 2012, 41(12): 2105-2108.

    Wu D J, Chen Y X, Lu W F, et al. Dilution characters of Al2O3-13wt%TiO2 coating by direct laser cladding on titanium alloy[J]. Rare Metal Materials and Engineering, 2012, 41(12): 2105-2108.

[13] 华亮, 田威, 廖文和, 等. 基于非线性连续疲劳损伤的激光熔覆构件疲劳寿命评估[J]. 中国激光, 2015, 42(9): 0903006.

    Hua L, Tian W, Liao W H, et al. Fatigue life evaluation for laser cladding component based on non-linear continuum fatigue damage model[J]. Chinese Journal of Lasers, 2015, 42(9): 0903006.

[14] 宋建丽, 李永堂, 邓琦林, 等. 激光熔覆成形技术的研究进展[J]. 机械工程学报, 2010, 46(14): 29-39.

    Song J L, Li Y T, Deng Q L, et al. Research progress of laser cladding forming technology[J]. Journal of Mechanical Engineering, 2010, 46(14): 29-39.

[15] Liu Q C, Janardhana M, Hinton B, et al. Laser cladding as a potential repair technology for damaged aircraft components[J]. International Journal of Structural Integrity, 2011, 2(3): 314-331.

[16] 方金祥, 董世运, 徐滨士, 等. 考虑固态相变的激光熔覆成形应力场有限元分析[J]. 中国激光, 2015, 42(5): 0503009.

    Fang J X, Dong S Y, Xu B S, et al. Study of stresses of laser metal deposition using FEM considering phase transformation effects[J]. Chinese Journal of Lasers, 2015, 42(5): 0503009.

[17] 戴德平, 蒋小华, 蔡建鹏, 等. 激光熔覆Inconel718镍基合金温度场与应力场模拟[J]. 中国激光, 2015, 42(9): 0903005.

    Dai D P, Jiang X H, Cai J P, et al. Numerical simulation of temperature field and stress distribution in Inconel718 Ni base alloy induced by laser cladding[J]. Chinese Journal of Lasers, 2015, 42(9): 0903005.

[18] 李美艳, 蔡春波, 韩彬, 等. 预热对激光熔覆陶瓷涂层温度场和应力场影响[J]. 材料热处理学报, 2015, 36(12): 197-203.

    Li M Y, Cai C B, Han B, et al. Numerical simulation of preheating on temperature and stress fields by laser cladding Ni-based ceramic coating[J]. Transactions of Materials and Heat Treatment, 2015, 36(12): 197-203.

[19] 宫新勇, 高士友, 咸士玉, 等. 基于温度特征的单道激光熔覆翘曲变形[J]. 激光与光电子学进展, 2017, 54(10): 101410.

    Gong X Y, Gao S Y, Xian S Y, et al. Warp deformation in single-track laser cladding based on temperature characteristics[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101410.

[20] 李美艳, 韩彬, 蔡春波, 等. 36(5): 25-28[J]. . 激光熔覆镍基合金温度场和应力场数值模拟. 焊接学报, 2015, 32: 114.

    Li M Y, Han B, Cai C B, et al. 36(5): 25-28[J]. stress fields of laser cladded Ni-based coating. Transactions of the China Welding Institution, 2015, 32: 114.

[21] 刘衍聪, 范常峰, 尹晓丽, 等. 铸铁表面双光束激光熔覆温度场与应力场分析[J]. 应用激光, 2014, 34(4): 288-293.

    Liu Y C, Fan C F, Yin X L, et al. Temperature and stress analysis of dual-beam laser cladding on gray cast iron surface[J]. Applied Laser, 2014, 34(4): 288-293.

[22] 任仲贺, 武美萍, 唐又红, 等. 基于热力耦合的激光熔覆数值模拟与实验研究[J]. 激光与光电子学研究进展, 2019, 56(5): 051404.

    Ren Z H, Wu M P, Tang Y H, et al. Numerical simulation and experimental research of laser cladding based on thermo-mechanical coupling[J]. Laser & Optoelectronics Progress, 2019, 56(5): 051404.

[23] Liu S D, Peng C Y, Ma M X, et al. Effect of Mn contents on the phase transition of the high entropy alloy prepared by laser cladding[J]. Materials Science Forum, 2016, 849: 64-70.

[24] 曾超. 激光熔覆热损伤评估及其检测研究[D]. 南京: 南京航空航天大学, 2013.

    ZengC. A study of thermal damage for laser cladding technology and its detection[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.

[25] 潘浒, 赵剑峰, 刘云雷, 等. 激光熔覆修复镍基高温合金稀释率的可控性研究[J]. 中国激光, 2013, 40(4): 0403007.

    Pan H, Zhao J F, Liu Y L, et al. Controllability research on dilution ratio of nickel-based superalloy by laser cladding reparation[J]. Chinese Journal of Lasers, 2013, 40(4): 0403007.

[26] 任仲贺, 武美萍, 李广阳, 等. TiO2/CeO2对Ni基激光熔覆层组织和性能的影响[J]. 激光与光电子学研究进展, 2019, 56(7): 071402.

    Ren Z H, Wu M P, Li G Y, et al. Effect of TiO2/CeO2 on microstructures and properties of Ni-based laser cladding layers[J]. Laser & Optoelectronics Progress, 2019, 56(7): 071402.

[27] Shu X Y, Hu L L, Li G F, et al. High-temperature oxidation resistance of the Ni60Ti alloy: an experimental and first-principles study[J]. Journal of Alloys and Compounds, 2017, 706: 297-304.

[28] 余鑫祥, 尹登峰, 余志明, 等. Ce含量对新型Al-Cu-Li合金的凝固行为及其相的影响[J]. 稀有金属材料与工程, 2016, 45(6): 1423-1429.

    Yu X X, Yin D F, Yu Z M, et al. Effects of cerium addition on solidification behaviour and intermetallic structure of novel Al-Cu-Li alloys[J]. Rare Metal Materials and Engineering, 2016, 45(6): 1423-1429.

[29] Chen R, Xu Q Y, Liu B C. Cellular automaton simulation of three-dimensional dendrite growth in Al-7Si-Mg ternary aluminum alloys[J]. Computational Materials Science, 2015, 105: 90-100.

[30] Adebiyi D I. Popoola A P I. Mitigation of abrasive wear damage of Ti-6Al-4V by laser surface alloying[J]. Materials & Design, 2015, 74: 67-75.

任仲贺, 武美萍, 崔宸, 夏思海. 激光熔覆温度场和CeO2、TiO2对材料相变的影响[J]. 中国激光, 2019, 46(8): 0802006. Zhonghe Ren, Meiping Wu, Chen Cui, Sihai Xia. Effects of Temperature Field and CeO2/TiO2 on Material Phase Transition in Laser Cladding[J]. Chinese Journal of Lasers, 2019, 46(8): 0802006.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!