Journal of Innovative Optical Health Sciences, 2011, 4 (3): 269, Published Online: Jan. 10, 2019  

A DUAL-MODALITY OPTICAL BIOPSY APPROACH FOR IN VIVO DETECTION OF PROSTATE CANCER IN RAT MODEL

Author Affiliations
Department of Bioengineering Joint Graduate Program between University of Texas at Arlington and University of Texas Southwestern Medical Center University of Texas at Arlington, TX 76019, USA
Abstract
Ultrasound-guided biopsy procedure for prostate cancer diagnosis, which is the current gold standard, involves quasi-random sampling of prostate tissue without any functional guidance. In this study, we discuss the possibility to augment the detection of prostate cancer using a dual-modality optical approach, which can be coupled with the current needle biopsy setup. Two techniques are light reflectance spectroscopy (LRS) that uses a broadband light source and a CCD array spectrometer, and auto-fluorescence lifetime measurement (AFLM) that uses a custom- designed, time-correlated single photon counting (TCSPC) system. Both LRS and AFLM were employed sequentially in this study to measure cancer tissue along with control tissue on a rat prostate tumor model. At an excitation wavelength of 447 nm, we investigated auto-fluorescence decay curves at the emission wavelengths of 532, 562, 632 and 684 nm for in vivo and ex vivo AFLM. These results show that auto-fluorescence lifetimes at all measured emission wavelengths differ between control and cancerous tissues with 100% specificity and sensitivity. Moreover, absolute values of hemoglobin derivatives and scattering coefficient were quantified using in vivo LRS. This part of study also demonstrates that light scattering and absorption are significantly different between the control and cancerous tissue. Overall, the study demonstrates that both LRS and AFLM may provide several intrinsic biomarkers for in vivo detection of prostate cancer.
References

[1] A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, M. J. Thun, "Cancer statistics, 2009," CA Cancer J. Clin. 59(4), 225-249 (2009).

[2] American Cancer Society, "Cancer Facts and Figures 2009," Atlanta: American Cancer Society (2009).

[3] N. B. Delongchamps, G. P. Haas, "Saturation biopsies for prostate cancer: Current uses and future prospects," Nat. Rev. Urol. 6(12), 645-652 (2009).

[4] U. Patel, "TRUS and prostate biopsy: Current status," Prostate Cancer Prostatic Dis. 7(3), 208-210 (2004).

[5] A. Descazeaud, M. Rubin, S. Chemama, S. Larre, L. Salomon, Y. Allory, D. Vordos, A. Hoznek, R. Yiou, D. Chopin, C. Abbou, A. de la Taille, "Saturation biopsy protocol enhances prediction of pT3 and surgical margin status on prostatectomy specimen," World J. Urol. 24(6), 676-680 (2006).

[6] J. S. Jones, A. Patel, L. Schoenfield, J. C. Rabets, C. D. Zippe, C. Magi-Galluzzi, "Saturation technique does not improve cancer detection as an initial prostate biopsy strategy," J. Urol. 175(2), 485-488 (2006).

[7] V. Sharma, D. Kashyap, A. Mathker, S. Narvenkar, K. Bensalah, W. Kabbani, A. Tuncel, J. A. Cadeddu, H. Liu, "Optical reflectance spectroscopy for detection of human prostate cancer," Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 118-121 (2009).

[8] H. Liu, H. Radhakrishnan, A. K. Senapati, C. E. Hagains, D. Peswani, A. Mathker, Y. B. Peng, "Near infrared and visible spectroscopic measurements to detect changes in light scattering and hemoglobin oxygen saturation from rat spinal cord during peripheral stimulation," Neuroimage 40(1), 217-227 (2008).

[9] G. Zonios, A. Dimou, "Modeling diffuse reflectance from semi-infinite turbid media: Application to the study of skin optical properties," Opt. Exp. 14(19), 8661-8674 (2006).

[10] C. A. Giller, H. Liu, D. C. German, D. Kashyap, R. B. Dewey, "A stereotactic near-infrared probe for localization during functional neurosurgical procedures: Further experience," J. Neurosurg. 110(2), 263-273 (2009).

[11] M. Johns, C. Giller, D. German, H. Liu, "Determination of reduced scattering coefficient of biological tissue from a needle-like probe," Opt. Exp. 13(13), 4828-4842 (2005).

[12] K. Bensalah, D. Peswani, A. Tuncel, J. D. Raman, I. Zeltser, H. Liu, J. Cadeddu, "Optical reflectance spectroscopy to differentiate benign from malignant renal tumors at surgery," Urology 73(1), 178-181 (2009).

[13] S. C. Kanick, C. van der Leest, J. G. Aerts, H. C. Hoogsteden, S. Kascakova, H. J. Sterenborg, A. Amelink, "Integration of single-fiber reflectance spectroscopy into ultrasound-guided endoscopic lung cancer staging of mediastinal lymph nodes," J. Biomed. Opt. 15(1), 017004 (2010).

[14] F. Fischer, E. F. Dickson, J. C. Kennedy, R. H. Pottier, "An affordable, portable fluorescence imaging device for skin lesion detection using a dual wavelength approach for image contrast enhancement and aminolaevulinic acid-induced protoporphyrin IX. Part II. In vivo testing," Lasers Med. Sci. 16(3), 207-212 (2001).

[15] K. Izuishi, H. Tajiri, T. Fujii, N. Boku, A. Ohtsu, T. Ohnishi, M. Ryu, T. Kinoshita, S. Yoshida, "The histological basis of detection of adenoma and cancer in the colon by autofluorescence endoscopic imaging," Endoscopy 31(7), 511-516 (1999).

[16] G. A. Wagnieres, W. M. Star, B. C. Wilson, "In vivo fluorescence spectroscopy and imaging for oncological applications," Photochem Photobiol. 68(5), 603-632 (1998).

[17] J. Mizeret, T. Stepinac, M. Hansroul, A. Studzinski, H.v.d. Bergh, G. Wagnieres, "Instrumentation for real-time fluorescence lifetime imaging in endoscopy," Review of Scientific Instruments 70(12), 4689-4701 (1999).

[18] K. M. Katika, L. Pilon, K. Dipple, S. Levin, J. Blackwell, H. Berberoglu, "In vivo time-resolved autofluorescence measurements on human skin," Proc. SPIE 6078, 60780L (2006).

[19] M. A. Mycek, K. T. Schomacker, N. S. Nishioka, "Colonic polyp differentiation using time-resolved autofluorescence spectroscopy," Gastrointest. Endosc. 48(4), 390-394 (1998).

[20] N. Ramanujam, M. F. Mitchell, A. Mahadevan- Jansen, S. L. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, "Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths," Photochem. Photobiol. 64(4), 720-735 (1996).

[21] V. Sharma, J. W. He, S. Narvenkar, Y. B. Peng, H. Liu, "Quantification of light reflectance spectroscopy and its application: Determination of hemodynamics on the rat spinal cord and brain induced by electrical stimulation," Neuroimage 56(3), 1316-1328 (2011).

[22] D. Kashyap, "Development of a broadband multichannel NIRS system for quantifying absolute concentrations of hemoglobin derivatives and reduced scattering coefficients," Thesis Dissertation (2007).

[23] S. R. Gunn, "Support vector machines for classifi- cation and regression," Image Speech and Intelligent Systems Research Group, University of Southampton (1997).

[24] P. Vaupel, A. Mayer, "Hypoxia in cancer: Signifi- cance and impact on clinical outcome," Cancer Metastasis Rev. 26(2), 225-239 (2007).

[25] A. A. Alagbala, B. A. Foster, "Animal models of prostate cancer," in Sourcebook of Models for Biomedical Research, P. M. Conn, Ed., Humana Press, Inc., pp. 639-649, 2008.

[26] K. J. Pienta, C. Abate-Shen, D. B. Agus, R. M. Attar, L. W. Chung, N. M. Greenberg, W. C. Hahn, J. T. Isaacs, N. M. Navone, D. M. Peehl, J. W. Simons, D. B. Solit, H. R. Soule, T. A. VanDyke, M. J. Weber, L. Wu, R. L. Vessella, "The current state of preclinical prostate cancer animal models," Prostate 68(6), 629-639 (2008).

VIKRANT SHARMA, NIMIT PATEL, JINHUI SHEN, LIPING TANG, GEORGE ALEXANDRAKIS, HANLI LIU. A DUAL-MODALITY OPTICAL BIOPSY APPROACH FOR IN VIVO DETECTION OF PROSTATE CANCER IN RAT MODEL[J]. Journal of Innovative Optical Health Sciences, 2011, 4(3): 269.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!