光学学报, 2016, 36 (3): 0304001, 网络出版: 2016-03-03   

基于超导探测器的激光测距系统作用距离分析

Ranging Capability Analysis for Laser Ranging System Using Superconducting Nanowire Detectors
作者单位
1 北京跟踪与通信技术研究所空间目标测量重点实验室, 北京100094
2 中国科学院云南天文台应用天文研究组, 云南 昆明 650011
3 南京大学电子科学与工程学院超导电子学研究所, 江苏 南京 210093
摘要
提出了将超导纳米线单光子探测器(SSPD)应用于空间碎片激光测距的构想,并通过理论分析和等效外场实验进行了可行性论证。根据SSPD 在门控时间内允许多次测量的特性,建立了信噪比随回波光子数的变化模型,并考察了激光器发射重复频率、天光背景噪声强度、探测器暗计数率等参数对信噪比的影响,结合回波光子数方程和噪声强度,以云南天文台激光测距系统为例,推算出该系统具备探测830 km 处米级大小空间碎片的能力。结合光纤耦合条件,设计了以太阳能板为目标的外场实验,通过改变光学系统透过率,获得了信噪比随回波光子数变化的实验曲线,验证了利用信噪比变化推测系统作用距离方法的有效性,理论和等效实验结果均表明超导纳米线探测器有望实现空间碎片激光测距。
Abstract
Space debris detection using superconducting nanowire single-photon detector (SSPD) as detectors is proposed and both theoretically and equivalent experimentally verified. The multi-detection characteristic of SSPD during gating period is analyzed, and the signal noise ratio (SNR) model with echo photon number is established. Effects of laser repetition rate, sky background noise rate and dark count rate of SSPD on SNR are discussed. Taking the kHz laser ranging system of Yunnan Observatories as an example, combined with the echo photon number equation, it implies that the kHz laser ranging system at Yunnan Observatories has the capability for 1 m2 space debris detection from 830 km away. Considering the fiber coupling requirement, an experimental curve of SNR versus echo number is obtained, which verifies the proposed method. Both theoretical and experimental results show that SSPD has the potential for space debris laser ranging.
参考文献

[1] Degnan J J. Millimeter accuracy satellite laser ranging: a review[J]. Contributions of space geodesy to geodynamics: technology, 1993, 25: 133-162.

[2] 薛莉, 李明, 李希宇, 等. 激光测距多光子分立时刻的反卷积解算方法[J]. 中国激光, 2015, 42(7): 0702007.

    Xue Li, Li Ming, Li Xiyu, et al.. Multi-photon time-of-flight resolution enhancement by deconvolution in laser ranging[J]. Chinese J Lasers, 2015, 42(7): 0702007.

[3] Gol'tsman G N, Okunev O, Chulkova G, et al.. Picosecond superconducting single-photon optical detector[J]. Appl Phys Lett, 2001, 79 (6): 705-707.

[4] Zinoni C, Alloing B, Li L H, et al.. Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors [J]. Appl Phys Lett, 2007, 91(3): 031106.

[5] Buller G S, Collins R J. Single-photon generation and detection[J]. Meas Sci Technol, 2010, 21(1): 012002.

[6] Hadfield R H. Single-photon detectors for optical quantum information applications[J]. Nature Photonics, 2009, 3(12): 696-705.

[7] Natarajan C M, Tanner M G, Hadfield R H. Superconducting nanowire single- photon detectors: physics and applications[J]. Superconductor Science and Technology, 2012, 25(6): 063001.

[8] Takesue H, Nam S W, Zhang Q, et al.. Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors [J]. Nature Photonics, 2007, 1(6): 343-348.

[9] Liu Y, Chen T Y, Wang J, et al.. Decoy-state quantum key distribution with polarized photons over 200 km[J]. Opt Express, 2010, 18 (8): 8587-8594.

[10] Sasaki M, Fujiwara M, Ishizuka H, et al.. Field test of quantum key distribution in the Tokyo QKD Network[J]. Opt Express, 2011, 19(11): 10387-10409.

[11] Jaspan M A, Habif J L, Hadfield R H, et al.. Heralding of telecommunication photon pairs with a superconducting single photon detector [J]. Appl Phys Lett, 2006, 89(3): 031112.

[12] Chen J, Altepeter J B, Medic M, et al.. Demonstration of a quantum controlled-NOT gate in the telecommunications band[J]. Phys Rev Lett, 2008, 100(13): 133603.

[13] Clausen C, Usmani I, Bussières F, et al.. Quantum storage of photonic entanglement in a crystal[J]. Nature, 2011, 469(7331): 508-511.

[14] Robinson B S, Kerman A J, Dauler E A, et al.. 781 Mbit/s photon-counting optical communications using a superconducting nanowire detector[J]. Opt Lett, 2006, 31(4): 444-446.

[15] Moision B, Farr W. Communication limits due to photon detector jitter[J]. Photonics Technology Letters, IEEE, 2008, 20(9): 715-717.

[16] R E Warburton, McCarthy A, Wallace A M, et al.. Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength[J]. Opt Lett, 2007, 32(15): 2266-2268.

[17] Chen S, Liu D, Zhang W, et al.. Time-of-flight laser ranging and imaging at 1550 nm using low-jitter superconducting nanowire singlephoton detection system[J]. Appl Opt, 2013, 52(14): 3241-3245.

[18] McCarthy A, Krichel N J, Gemmell N R, et al.. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection[J]. Opt Express, 2013, 21(7): 8904-8915.

[19] 张忠萍, 张海峰, 吴志波, 等. 基于200 Hz重复率高功率全固态激光器空间碎片激光测距试验[J]. 中国激光, 2014, 41(s1): s108005.

    Zhang Zhongping, Zhang Haifeng, Wu Zhibo, et al.. Experiment of laser ranging to space debris based on high power solid-state laser system at 200 Hz repetition rate[J]. Chinese J Lasers, 2014, 41(s1): s108005.

[20] 寇添, 王海晏, 王芳, 等. 机载激光探测空中目标脉冲回波特性研究[J]. 光学学报, 2015, 35(4): 0414001.

    Kou Tian, Wang Haiyan, Wang Fang, et al.. Research on pulse echo characteristic of airborne laser detecting air target[J]. Acta Optica Sinica, 2015, 35(4): 0414001.

[21] 翟东升, 汤儒峰, 黄凯, 等. 基于G-APD 阵列的卫星激光测距系统探测性能分析[J]. 中国激光, 2015, 42(6): 0608007.

    Zhai Dongsheng, Tang Rufeng, Huang Kai, et al.. Analysis on detection performance of satellite laser ranging based on Geiger mode APD arrays[J]. Chinese J Lasers, 2015, 42(6): 0608007.

[22] Goodman J W, Haupt P L. Statistical Optics[M]. Hoboken: John Wiley & Sons Inc, 2015.

[23] Zhang Z P, Yang F M, Zhang H F, et al.. The use of laser ranging to measure space debris[J]. Research in Astronomy and Astrophysics, 2012, 12(2): 212-218.

[24] Schroeder D J. Astronomical Optics[M]. San Diego: Academic Press, 1999.

[25] Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles[M]. Hoboken: John Wiley & Sons, 2008.

[26] 许晓军, 陆启生, 舒柏宏, 等. 激光照明的大气后向散射理论模拟和试验研究[J]. 红外与激光工程, 2001, 30(1): 60-65.

    Xu Xiaojun, Lu Qisheng, Shu Bohong, et al.. Back-scattering model and experiment of laser illuminating[J]. Infrared and Laser Engineering, 2001, 30(1): 60-65.

[27] 刘俊池, 李洪文, 王建立, 等. 地基大口径红外光电设备快速辐射定标[J]. 光学学报, 2015, 35(3): 0301003.

    Liu Junchi, Li Hongwen, Wang Jianli, et al.. Fast radiance calibration for ground-based large-aperture infrared opto-electric equipment [J]. Acta Optica Sinica, 2015, 35(3): 0301003.

[28] Akhlaghi M K, Majedi A H. Gated mode superconducting nanowire single photon detectors[J]. Opt Express, 2012, 20(2): 1608-1616.

[29] Pellegrini S, Buller G S, Smith J M, et al.. Laser-based distance measurement using picosecond resolution time-correlated single-photon counting[J]. Meas Sci Technol, 2000, 11(6): 712-716.

[30] McCarthy A, Collins R J, Krichel N J, et al.. Long-range time-of-flight scanning sensor based on high-speed time-correlated singlephoton counting[J]. Appl Opt, 2009, 48(32): 6241-6251.

[31] Zhang Labao, Wan Chao, Gu Min, et al.. Dual-lens beam compression for optical coupling in superconducting nanowire single-photon detectors[J]. Sci Bull, 2015, 60(16): 1434-1438.

薛莉, 翟东升, 李语强, 张蜡宝, 李祝莲, 康琳, 吴培亨, 李明, 熊耀恒. 基于超导探测器的激光测距系统作用距离分析[J]. 光学学报, 2016, 36(3): 0304001. Xue Li, Zhai Dongsheng, Li Yuqiang, Zhang Labao, Li Zhulian, Kang Lin, Wu Peiheng, Li Ming, Xiong Yaoheng. Ranging Capability Analysis for Laser Ranging System Using Superconducting Nanowire Detectors[J]. Acta Optica Sinica, 2016, 36(3): 0304001.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!