红外与激光工程, 2019, 48 (1): 0106001, 网络出版: 2019-04-02   

少光子灵敏度精密激光测距方法及验证

Estimation and verification of high-accuracy laser ranging on several photons
作者单位
1 中国科学院上海技术物理研究所 空间主动光电技术与系统实验室, 上海 200083
2 中国科学院大学, 北京 100049
3 脉冲功率激光技术国家重点实验室, 安徽 合肥 230037
摘要
针对传统线性探测激光能量需求高、光子计数难以区分信号和噪声的特点, 提出了一种基于少光子的高精度激光测距方法。利用硅光电倍增管(Silicon Photomultiplier, SiPM)作为回波探测器, 并对脉冲测距系统的回波响应模型、噪声特性以及测距精度进行分析。搭建了实验验证系统, 实现了在激光波长为532 nm、能量为10 nJ的条件下, 对107.86 m处的面目标进行测距。实验结果表示, 系统的噪声为随机分布, 且噪声幅度不超过3个像元同时响应量级, 鉴别阈值略大于该值时, 即可清晰地分辨出信号和噪声; 对于包含32个光子的回波信号, 探测器中发生雪崩像元的个数约为4个, 此时系统测距精度达到3?滓=3 cm。
Abstract
A new high-accuracy laser ranging technology based on several photons was mentioned and verified, according to traditional linear detection needing high laser energy and photon counting detection hard to distinguish the avalanche events generated by signal or noise. Silicon Photomultiplier was used as echo detector, making analysis of the echo response model, noise characteristics and ranging accuracy. Laser ranging system was set up to measure target of the 107.86 m at laser wavelength of 532 nm and energy of 10 nJ. Experimental verification result indicates that the noise is a random distribution, which maximum magnitude equals to three pixels fired at the same time. When threshold is set above that, noise and signal can be clearly distinguished. For echo signal containing 32 photons, about four pixels are fired. Meanwhile, ranging accuracy of the system is up to 3 cm at 3 sigma.
参考文献

[1] 胡春生. 脉冲半导体激光器高速三维成像激光雷达研究[D]. 长沙: 国防科技大学, 2005.

    Hu Chunsheng. Investigation into the high-speed pulsed laser diode 3D-imaging ladar [D]. Changsha: National University of Defense Technology, 2005. (in Chinese)

[2] 纪荣祎, 赵长明, 任学成. 高精度高重频脉冲激光测距系统[J]. 红外与激光工程, 2011, 40(8): 1461-1464.

    Ji Rongyi, Zhao Changming, Ren Xuecheng. High precision and high frequency pulse laser ranging system [J]. Infrared and Laser Engineering, 2011, 40(8): 1461-1464. (in Chinese)

[3] 侯利冰. 运动平台条件下光子计数激光成像雷达关键技术研究[D]. 上海: 中国科学院上海技术物理研究所, 2013.

    Hou Libing. Research on key technology of photon counting imaging lidar in moving conditions [D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2013. (in Chinese)

[4] 纪应军, 石柱, 覃文治, 等. 用于光子计数的InGaAs/InP SPAD设计[J]. 红外与激光工程, 2015, 44(3): 934-940.

    Ji Yingjun, Shi Zhu, Qin Wenzhi, et al. Design and characterization of InGaAs/InP single-photon avalanche diodes for photon counting[J]. Infrared and Laser Engineering, 2015, 44(3): 934-940. (in Chinese)

[5] 何伟基, 司马博羽, 苗壮, 等. 光子计数三维成像激光雷达反转误差的校正[J]. 光学 精密工程, 2013, 21(10): 2488-2494.

    He Weiji, Sima Boyu, Miao Zhuang, et al. Correction of reversal errors in photon counting 3D imaging lidar[J]. Optics and Precision Engineering, 2013, 21(10): 2488-2494. (in Chinese)

[6] Bao Z, Li Z, Shi Y, et al. Coincidence photon-counting laser ranging for moving targets with high signal-to-noise ratio [J]. IEEE Photonics Technology Letters, 2014, 26(15): 1495-1498.

[7] Bao Z, Liang Y, Wang Z, et al. Laser ranging at few-photon level by photon-number-resolving detection [J]. Appl Opt, 2014, 53(18): 3908-3920.

[8] 李亮, 龚光华. 硅光电倍增管的新发展[C]//全国核电子学与核探测技术学术年会, 2010.

    Li Liang, Gong Guanghua. The new development of silicon photomultiplier[C]//National Annual Conference on Nuclear Electronics and Nuclear Detection Technology, 2010. (in Chinese)

[9] 聂瑞杰, 徐智勇, 张启衡, 等. SiPM阵列电子特性建模和三维测深仪前端电子学优化[J]. 光学 精密工程, 2012, 20(8): 1661-1668.

    Nie Ruijie, Xu Zhiyong, Zhang Qiheng, et al. Model of electrical characteristics of SiPM array and optimization of front-end design for three-dimensional depth sounder[J]. Optics and Precision Engineering, 2012, 20(8): 1661-1668. (in Chinese)

[10] 张国青, 刘丽娜, 朱长军. 采用多像素光子计数器的探测率与虚警率[J]. 红外与激光工程, 2013, 42(7): 1819-1824.

    Zhang Guoqing, Liu Lina, Zhu Changjun. Detection and false-alarm probabilities based on Multi-Pixel Photon Counter[J]. Infrared and Laser Engineering, 2013, 42(7): 1819-1824. (in Chinese)

[11] 孟庆季, 张续严, 周凌, 等. 机载激光3D探测成像系统的关键技术[J]. 中国光学, 2011, 4(3): 327-339.

    Meng Qingji, Zhang Xuyan, Zhou Ling, et al. Key technologies of airborne laser 3D detection imaging system [J]. Chinese Optics, 2011, 4(3): 327-339. (in Chinese)

[12] C-Series (Low Noise/MLP) SiPM User Manual, 2014.

[13] O′Neill K, Pavlov N, Dolinsky S, et al. SensL new fast timing silicon photomultiplier[C]//Proceedings of Science-International Workshop on New Photon-Detectors, 2012.

[14] Eckert P, Schultz-Coulon H C, Shen W, et al. Characterization studies of silicon photomultipliers [J]. Nuclear Inst & Methods in Physics Research A, 2010, 620(2): 217-226.

[15] SensL, C-Series (Low Noise/MLP) SiPM Datasheet, 2014.

[16] Technical note: Introduction to the Silicon Photomultiplier [S]. Application Note, 2007: 4-7.

[17] Rech I, Ingargiola A, Spinelli R, et al. Optical crosstalk in single photon avalanche diode arrays: a new complete model [J]. Optics Express, 2008, 16(12): 8381-8394.

刘鸿彬, 李铭, 舒嵘, 胡以华, 黄庚华. 少光子灵敏度精密激光测距方法及验证[J]. 红外与激光工程, 2019, 48(1): 0106001. Liu Hongbin, Li Ming, Shu Rong, Hu Yihua, Huang Genghua. Estimation and verification of high-accuracy laser ranging on several photons[J]. Infrared and Laser Engineering, 2019, 48(1): 0106001.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!