光学学报, 2021, 41 (1): 0127001, 网络出版: 2021-02-23   

高精细度法布里-珀罗光学微腔及其在强耦合腔量子电动力学中的应用 下载: 1537次特邀综述

High-Finesse Micro-Optical Fabry-Perot Cavity and Its Applications in Strongly Coupled Cavity Quantum Electrodynamics
张天才 1,2,*毋伟 1,2杨鹏飞 1,2,3李刚 1,2,**张鹏飞 1,2
作者单位
1 山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006
2 山西大学极端光学协同创新中心, 山西 太原 030006
3 山西大学大数据科学与产业研究院, 山西 太原 030006
引用该论文

张天才, 毋伟, 杨鹏飞, 李刚, 张鹏飞. 高精细度法布里-珀罗光学微腔及其在强耦合腔量子电动力学中的应用[J]. 光学学报, 2021, 41(1): 0127001.

Tiancai Zhang, Wei Wu, Pengfei Yang, Gang Li, Pengfei Zhang. High-Finesse Micro-Optical Fabry-Perot Cavity and Its Applications in Strongly Coupled Cavity Quantum Electrodynamics[J]. Acta Optica Sinica, 2021, 41(1): 0127001.

参考文献

[1] HernándezG. Fabry-Perot interferometers[M]. New York: Cambridge University Press, 1988.

[2] Day T, Gustafson E K, Byer R L. Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd∶YAG lasers locked to a Fabry-Perot interferometer[J]. IEEE Journal of Quantum Electronics, 1992, 28(4): 1106-1117.

[3] Wei T, Han Y K, Tsai H L, et al. Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser[J]. Optics Letters, 2008, 33(6): 536-538.

[4] Wei F, Yang F, Zhang X, et al. Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity[J]. Optics Express, 2016, 24(15): 17406-17415.

[5] Guo Y S, Jiang S, Chen X, et al. Using a Fabry-Perot cavity to augment the enhancement factor for surface-enhanced Raman spectroscopy and tip-enhanced Raman spectroscopy[J]. The Journal of Physical Chemistry C, 2018, 122(26): 14865-14871.

[6] Drouin B J, Tang A, Schlecht E, et al. A CMOS millimeter-wave transceiver embedded in a semi-confocal Fabry-Perot cavity for molecular spectroscopy[J]. The Journal of Chemical Physics, 2016, 145(7): 074201.

[7] Monteiro C, Silva S, Frazão O. Hollow microsphere Fabry-Perot cavity for sensing applications[J]. IEEE Photonics Technology Letters, 2017, 29(15): 1229-1232.

[8] Bitarafan M H. DeCorby R G. On-chip high-finesse Fabry-Perot microcavities for optical sensing and quantum information[J]. Sensors, 2017, 17(8): 1748.

[9] Jewell S A, Hendry E, Isaac T H, et al. Tuneable Fabry-Perot etalon for terahertz radiation[J]. New Journal of Physics, 2008, 10(3): 033012.

[10] Jewell J L, Rushford M C, Gibbs H M. Use of a single nonlinear Fabry-Perot etalon as optical logic gates[J]. Applied Physics Letters, 1984, 44(2): 172-174.

[11] Guérin N, Enoch S, Tayeb G, et al. A metallic Fabry-Perot directive antenna[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(1): 220-224.

[12] Ju J, Choi J. Broadband high-gain Fabry-Perot cavity antenna with back radiation reduction[J]. Microwave and Optical Technology Letters, 2013, 55(5): 975-978.

[13] Corbitt T, Ottaway D, Innerhofer E, et al. Measurement of radiation-pressure-induced optomechanical dynamics in a suspended Fabry-Perot cavity[J]. Physical Review A, 2006, 74(2): 021802.

[14] Lawall J R. Fabry-Perot metrology for displacements up to 50 mm[J]. Journal of the Optical Society of America A, 2005, 22(12): 2786-2798.

[15] Jones R J, Diels J C. Stabilization of femtosecond lasers for optical frequency metrology and direct optical to radio frequency synthesis[J]. Physical Review Letters, 2001, 86(15): 3288.

[16] Aoki T, Dayan B, Wilcut E, et al. Observation of strong coupling between one atom and a monolithic microresonator[J]. Nature, 2006, 443(7112): 671-674.

[17] Gröblacher S, Hammerer K, Vanner M R, et al. Observation of strong coupling between a micromechanical resonator and an optical cavity field[J]. Nature, 2009, 460(7256): 724-727.

[18] Yokoyama H. Physics and device applications of optical microcavities[J]. Science, 1992, 256(5053): 66-70.

[19] Raimond JM, HarocheS. Exploring the quantum: atoms, cavities, and photons[M]. New York: Oxford University Press, 2006: 231- 278.

[20] van Enk S J, Cirac J I, Zoller P. Photonic channels for quantum communication[J]. Science, 1998, 279(5348): 205-208.

[21] Mabuchi H, Doherty A C. Cavity quantum electrodynamics: coherence in context[J]. Science, 2002, 298(5597): 1372-1377.

[22] Kimble H J. The quantum internet[J]. Nature, 2008, 453(7198): 1023-1030.

[23] Thompson R J, Rempe G, Kimble H J, et al. Observation of normal-mode splitting for an atom in an optical cavity[J]. Physical Review Letters, 1992, 68(8): 1132-1135.

[24] Mckeever J, Boca A, Boozer A D, et al. Deterministic generation of single photons from one atom trapped in a cavity[J]. Science, 2004, 303(5666): 1992-1994.

[25] Brennecke F, Donner T, Ritter S, et al. Cavity QED with a Bose-Einstein condensate[J]. Nature, 2007, 450(7167): 268-271.

[26] Zoller P, Beth T, Binosi D, et al. Quantum information processing and communication: strategic report on current status, visions and goals for research in Europe[J]. European Physical Journal D, 2005, 36(2): 203-228.

[27] Weber B, Specht H P, Müller T, et al. Photon-photon entanglement with a single trapped atom[J]. Physical Review Letters, 2009, 102(3): 030501.

[28] Rauschenbeutel A, Nogues G, Osnaghi S, et al. Coherent operation of a tunable quantum phase gate in cavity QED[J]. Physical Review Letters, 1999, 83(24): 5166-5169.

[29] Banaszek K, Demkowicz-Dobrzański R, Walmsley I A. Quantum states made to measure[J]. Nature Photonics, 2009, 3(12): 673-676.

[30] Chen Z L, Bohnet J G, Sankar S R, et al. Conditional spin squeezing of a large ensemble via the vacuum Rabi splitting[J]. Physical Review Letters, 2011, 106(13): 133601.

[31] Rempe G, Thompson R J, Kimble H J, et al. Measurement of ultralow losses in an optical interferometer[J]. Optics Letters, 1992, 17(5): 363-365.

[32] Hood C J. The atom-cavity microscope: single atoms bound in orbit by single photons[J]. Science, 2000, 287(5457): 1447-1453.

[33] McKeever J, Boca A, Boozer A D, et al. Experimental realization of a one-atom laser in the regime of strong coupling[J]. Nature, 2003, 425(6955): 268-271.

[34] Keller M, Lange B, Hayasaka K, et al. Continuous generation of single photons with controlled waveform in an ion-trap cavity system[J]. Nature, 2004, 431(7012): 1075-1078.

[35] Pinkse P W, Fischer T, Maunz P, et al. Trapping an atom with single photons[J]. Nature, 2000, 404(6776): 365-368.

[36] Maunz P, Puppe T, Schuster I, et al. Cavity cooling of a single atom[J]. Nature, 2004, 428(6978): 50-52.

[37] Schuster I, Kubanek A, Fuhrmanek A, et al. Nonlinear spectroscopy of photons bound to one atom[J]. Nature Physics, 2008, 4(5): 382-385.

[38] Kubanek A, Koch M, Sames C, et al. Photon-by-photon feedback control of a single-atom trajectory[J]. Nature, 2009, 462(7275): 898-901.

[39] Ourjoumtsev A, Kubanek A, Koch M, et al. Observation of squeezed light from one atom excited with two photons[J]. Nature, 2011, 474(7353): 623-626.

[40] Hamsen C, Tolazzi K N, Wilk T, et al. Strong coupling between photons of two light fields mediated by one atom[J]. Nature Physics, 2018, 14(9): 885-889.

[41] Terraciano M L, Olson Knell R, Norris D G, et al. Photon burst detection of single atoms in an optical cavity[J]. Nature Physics, 2009, 5(7): 480-484.

[42] Baumann K, Guerlin C, Brennecke F, et al. Dicke quantum phase transition with a superfluid gas in an optical cavity[J]. Nature, 2010, 464(7293): 1301-1306.

[43] Purdy T P, Brooks D W, Botter T, et al. Tunable cavity optomechanics with ultracold atoms[J]. Physical Review Letters, 2010, 105(13): 133602.

[44] Stute A, Casabone B, Schindler P, et al. Tunable ion-photon entanglement in an optical cavity[J]. Nature, 2012, 485(7399): 482-485.

[45] Takahashi H, Kassa E, Christoforou C, et al. Strong coupling of a single ion to an optical cavity[J]. Physical Review Letters, 2020, 124(1): 013602.

[46] Tong L M, Zi F, Guo X, et al. Optical microfibers and nanofibers: a tutorial[J]. Optics Communications, 2012, 285(23): 4641-4647.

[47] Tong L M, Gattass R R, Ashcom J B, et al. Subwavelength-diameter silica wires for low-loss optical wave guiding[J]. Nature, 2003, 426(6968): 816-819.

[48] Zhang L, Lou J Y, Tong L M. Micro/nanofiber optical sensors[J]. Photonic Sensors, 2011, 1(1): 31-42.

[49] Cui J M, Zhou K, Zhao M S, et al. Polarization nondegenerate fiber Fabry-Perot cavities with large tunable splittings[J]. Applied Physics Letters, 2018, 112(17): 171105.

[50] Zhang T T, Zhou C H, Wang W J, et al. Generation of low-threshold optofluidic lasers in a stable Fabry-Pérot microcavity[J]. Optics & Laser Technology, 2017, 91: 108-111.

[51] Dong C H, Shen Z, Zou C L, et al. Brillouin-scattering-induced transparency and non-reciprocal light storage[J]. Nature Communications, 2015, 6: 6193.

[52] Shen Z, Zhang Y L, Chen Y, et al. Experimental realization of optomechanically induced non-reciprocity[J]. Nature Photonics, 2016, 10(10): 657-661.

[53] Shen Z, Zhang Y L, Chen Y, et al. Reconfigurable optomechanical circulator and directional amplifier[J]. Nature Communications, 2018, 9: 1797.

[54] Wu X W, Zou C L, Wei W, et al. Photoluminescence from site-selected coupling between quantum dots and microtoroid cavities[J]. Chinese Optics Letters, 2010, 8(7): 709-712.

[55] Chang L, Jiang X S, Hua S Y, et al. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators[J]. Nature Photonics, 2014, 8(7): 524-529.

[56] 唐水晶, 李贝贝, 肖云峰. 回音壁模式光学微腔传感[J]. 物理, 2019, 48(3): 137-147.

    Tang S J, Li B B, Xiao Y F. Optical sensing with whispering-gallery microcavities[J]. Physics, 2019, 48(3): 137-147.

[57] Peng B, Özdemir Ş K, Lei F, et al. Parity-time-symmetric whispering-gallery microcavities[J]. Nature Physics, 2014, 10(5): 394-398.

[58] Lin J T, Yao N, Hao Z Z, et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator[J]. Physical Review Letters, 2019, 122(17): 173903.

[59] Kong Y F, Bo F, Wang W W, et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 2020, 32(3): 1806452.

[60] Yang Y D, Tang M, Wang F L, et al. Whispering-gallery mode hexagonal micro-/nanocavity lasers[J]. Photonics Research, 2019, 7(5): 594-607.

[61] Chen W, Zhang S P, Deng Q, et al. Probing of sub-picometer vertical differential resolutions using cavity plasmons[J]. Nature Communications, 2018, 9: 801.

[62] 李利平, 刘涛, 李刚, 等. 超高精细度光学腔中低损耗的测量[J]. 物理学报, 2004, 53(5): 1401-1405.

    Li L P, Liu T, Li G, et al. Measurement of ultra-low losses in optical supercavity[J]. Acta Physica Sinica, 2004, 53(5): 1401-1405.

[63] Li G, Zhang Y, Li Y, et al. Precision measurement of ultralow losses of an asymmetric optical microcavity[J]. Applied Optics, 2006, 45(29): 7628-7631.

[64] Zhang P F, Guo Y Q, Li Z H, et al. Elimination of the degenerate trajectory of a single atom strongly coupled to a tilted TEM10 cavity mode[J]. Physical Review A, 2011, 83(3): 031804.

[65] 文瑞娟, 杜金锦, 李文芳, 等. 内腔多原子直接俘获的强耦合腔量子力学系统的构建[J]. 物理学报, 2014, 63(24): 244203.

    Wen R J, Du J J, Li W F, et al. Construction of a strongly coupled cavity quantum electrodynamics system with easy accessibility of single or multiple intra-cavity atoms[J]. Acta Physica Sinica, 2014, 63(24): 244203.

[66] Yang P F, He H, Wang Z H, et al. Cavity enhanced measurement of trap frequency in an optical dipole trap[J]. Chinese Physics B, 2019, 28(4): 043701.

[67] Yang P F, Xia X W, He H, et al. Realization of nonlinear optical nonreciprocity on a few-photon level based on atoms strongly coupled to an asymmetric cavity[J]. Physical Review Letters, 2019, 123(23): 233604.

[68] Zhang P F, Zhang Y C, Li G, et al. Sensitive detection of individual neutral atoms in a strong coupling cavity QED system[J]. Chinese Physics Letters, 2011, 28(4): 044203.

[69] Du J J, Li W F, Wen R J, et al. Precision measurement of single atoms strongly coupled to the higher-order transverse modes of a high-finesse optical cavity[J]. Applied Physics Letters, 2013, 103(8): 083117.

[70] 李志刚, 张玉驰, 李刚, 等. 快速精确测定超高反射率镜片的方法: CN100573082C[P].2009-12-23.

    Li ZG, Zhang YC, LiG, et al. and accurately measuring ultra-high reflectivity lens: CN100573082C[P].2009-12-23.

[71] Hood C J, Kimble H J, Ye J. Characterization of high-finesse mirrors: loss, phase shifts, and mode structure in an optical cavity[J]. Physical Review A, 2001, 64(3): 033804.

[72] 张鹏飞, 李刚, 张天才. 一种超稳定超高精细度微光学腔的制作方法:CN102427200A[P].2012-11-21.

    Zhang PF, LiG, Zhang T C. Method for manufacturing ultra-stable ultra-high-fineness micro-optical cavity: CN102427200A[P].2012-11-21.

[73] Drever R W P, Hall J L, Kowalski F V, et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 1983, 31(2): 97-105.

[74] Lindsay B G, Smith K A, Dunning F B. Control of long-term output frequency drift in commercial dye lasers[J]. Review of Scientific Instruments, 1991, 62(6): 1656-1657.

[75] 杜金锦, 李刚, 李文芳, 等. 一种高精细度微光学腔的锁定装置及其锁定方法:CN102520516B[P].2013-06-26.

    Du JJ, LiG, Li WF, et al. and lockingmethod:CN102520516B[P]. 2013-06-26.

[76] 李刚, 张鹏飞, 张天才. 一种温漂自补偿的光学参考腔:CN109888609[P].2019-06-14.

    LiG, Zhang PF, Zhang T C. An optical reference cavity with self-compensation for temperature drift: CN109888609[P].2019-06-14.

[77] Zhang P F, Li G, Zhang Y C, et al. Light-induced atom desorption for cesium loading of a magneto-optical trap: analysis and experimental investigations[J]. Physical Review A, 2009, 80(5): 053420.

[78] Phillips W D. Nobel Lecture: laser cooling and trapping of neutral atoms[J]. Reviews of Modern Physics, 1998, 70(3): 721.

[79] Dalibard J, Cohen-Tannoudji C. Laser cooling below the Doppler limit by polarization gradients: simple theoretical models[J]. Journal of the Optical Society of America B, 1989, 6(11): 2023-2045.

[80] Li G, Li L P, Du Z J, et al. Ultra-low mean-photon-number measurement with balanced optical heterodyne detection[J]. Chinese Physics Letters, 2004, 21(4): 671-674.

[81] Li W F, Du J J, Wen R J, et al. Temperature measurement of cold atoms using single-atom transits and Monte Carlo simulation in a strongly coupled atom-cavity system[J]. Applied Physics Letters, 2014, 104(11): 113102.

[82] Du J J, Li W F, Wen R J, et al. Experimental investigation of the statistical distribution of single atoms in cavity quantum electrodynamics[J]. Laser Physics Letters, 2015, 12(6): 065501.

[83] Yang PF, LiM, HanX, et al. ( 2019-11-23)[2020-03-15]. org/abs/1911. 10300. https://arxiv.

[84] Wang Z H, Tian Y L, Yang C, et al. Experimental test of Bohr's complementarity principle with single neutral atoms[J]. Physical Review A, 2016, 94(6): 062124.

[85] Tian Y L, Wang Z H, Zhang P F, et al. Measurement of complete and continuous Wigner functions for discrete atomic systems[J]. Physical Review A, 2018, 97(1): 013840.

[86] Li G, Tian Y L, Wu W, et al. Triply magic conditions for microwave transition of optically trapped alkali-metal atoms[J]. Physical Review Letters, 2019, 123(25): 253602.

[87] Nölleke C, Neuzner A, Reiserer A, et al. Efficient teleportation between remote single-atom quantum memories[J]. Physical Review Letters, 2013, 110(14): 140403.

[88] Kato S, Német N, Senga K, et al. Observation of dressed states of distant atoms with delocalized photons in coupled-cavities quantum electrodynamics[J]. Nature Communications, 2019, 10: 1160.

[89] Okada M, Serikawa T, Dannatt J, et al. Extending the piezoelectric transducer bandwidth of an optical interferometer by suppressing resonance using a high dimensional IIR filter implemented on an FPGA[J]. Review of Scientific Instruments, 2020, 91(5): 055102.

[90] Guo Y Q, Wang L J, Wang Y, et al. High-order photon correlations through double Hanbury Brown-Twiss measurements[J]. Journal of Optics, 2020, 22(9): 095202.

[91] Guo Y Q, Yang R C, Li G, et al. Nonclassicality characterization in photon statistics based on binary-response single-photon detection[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44(20): 205502.

[92] 曹晋凯, 杨鹏飞, 田亚莉, 等. 基于增强型CCD光场高阶相干度的测量[J]. 光学学报, 2019, 39(7): 0712008.

    Cao J K, Yang P F, Tian Y L, et al. Measurement of high-order coherence of light field based on intensified charge-coupled device[J]. Acta Optica Sinica, 2019, 39(7): 0712008.

[93] Brown K R, Dani K M. Stamper-Kurn D M, et al. Deterministic optical Fock-state generation[J]. Physical Review A, 2003, 67(4): 043818.

[94] Yang R C, Li G, Li J, et al. Atomic N00N state generation in distant cavities by virtual excitations[J]. Chinese Physics B, 2011, 20(6): 060302.

[95] Yang R C, Li G, Zhang T C. Robust atomic entanglement in two coupled cavities via virtual excitations and quantum Zeno dynamics[J]. Quantum Information Processing, 2013, 12(1): 493-504.

[96] Li G, Zhang P F, Zhang T C. Entanglement of remote material qubits through nonexciting interaction with single photons[J]. Physical Review A, 2018, 97(5): 053808.

[97] Yang B, Chen Y Y, Zheng Y G, et al. Quantum criticality and the Tomonaga-Luttinger liquid in one-dimensional Bose gases[J]. Physical Review Letters, 2017, 119(16): 165701.

[98] Vahala K J. Optical microcavities[J]. Nature, 2003, 424(6950): 839-846.

[99] Gorodetsky M L, Savchenkov A A, Ilchenko V S. Ultimate Q of optical microsphere resonators[J]. Optics Letters, 1996, 21(7): 453-455.

[100] Dong C H, He L, Xiao Y F, et al. Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing[J]. Applied Physics Letters, 2009, 94(23): 231119.

[101] Kiraz A, Michler P, Becher C, et al. Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure[J]. Applied Physics Letters, 2001, 78(25): 3932-3934.

[102] Peng B, Özdemir Ş K, Chen W, et al. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities[J]. Nature communications, 2014, 5: 5082.

[103] Zhu J G, Ozdemir S K, Xiao Y F, et al. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator[J]. Nature Photonics, 2010, 4(1): 46-49.

[104] Armani D K, Kippenberg T J, Spillane S M, et al. Ultra-high-Q toroid microcavity on a chip[J]. Nature, 2003, 421(6926): 925-928.

[105] Vu kovi J, Lon ar M, Mabuchi H, et al. Design of photonic crystal microcavities for cavity QED[J]. Physical Review E, 2001, 65(1): 016608.

[106] Gu Y, Wang L, Ren P, et al. Intrinsic quantum beats of atomic populations and their nanoscale realization through resonant plasmonic antenna[J]. Plasmonics, 2012, 7(1): 33-38.

[107] Ren J J, Gu Y, Zhao D X, et al. Evanescent-vacuum-enhanced photon-exciton coupling and fluorescence collection[J]. Physical Review Letters, 2017, 118(7): 073604.

[108] Zhang F, Ren J, Shan L, et al. Chiral cavity quantum electrodynamics with coupled nanophotonic structures[J]. Physical Review A, 2019, 100(5): 053841.

[109] Wang X, Song L J, Wang C X, et al. Optimization of a magneto-optic trap using nanofibers[J]. Chinese Physics B, 2019, 28(7): 073701.

[110] 宋丽军, 张鹏飞, 李刚, 等. 一种无损测量微球直径均匀度的测量装置及方法:CN110333170A[P].2020-03-25.

    Song LJ, Zhang PF, LiG, et al. and method for nondestructively measuring microsphere diameter uniformity: CN110333170A[P].2020-03-25.

[111] Zhang P F, Wang X, Song L J, et al. Characterization of scattering losses in tapered optical fibers perturbed by a microfiber tip[J]. Journal of the Optical Society of America B, 2020, 37(5): 1401-1405.

张天才, 毋伟, 杨鹏飞, 李刚, 张鹏飞. 高精细度法布里-珀罗光学微腔及其在强耦合腔量子电动力学中的应用[J]. 光学学报, 2021, 41(1): 0127001. Tiancai Zhang, Wei Wu, Pengfei Yang, Gang Li, Pengfei Zhang. High-Finesse Micro-Optical Fabry-Perot Cavity and Its Applications in Strongly Coupled Cavity Quantum Electrodynamics[J]. Acta Optica Sinica, 2021, 41(1): 0127001.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!