光电工程, 2020, 47 (4): 190272, 网络出版: 2020-05-27   

涡旋光束轨道角动量在大气湍流传输下的特性分析

Characteristic analysis of orbital angular momentum of vortex beam propagating in atmospheric turbulent
张利宏 1,2,3沈锋 1,2,*兰斌 1,2
作者单位
1 中国科学院自适应光学重点实验室,四川 成都 610209
2 中国科学院光电技术研究所,四川 成都 610209
3 中国科学院大学,北京 100049
摘要
从拉盖尔-高斯涡旋光束表达式出发,基于瑞利衍射理论,通过研究涡旋光束在大气湍流中传输时的旋转相干函数的变化规律,总结了涡旋光束在大气湍流中传输时各轨道角动量之间的串扰情况,使用了拓扑荷数探测概率描述串扰规律,并推导了拓扑荷数探测概率的解析表达式。研究了涡旋光束通过湍流后的拓扑荷数的分布情况,并将结果与涡旋光束通过大气随机相位屏的数值仿真结果进行了对比,给出了理论与仿真的拓扑荷数的探测概率随湍流强度以及初始涡旋光束拓扑荷数大小的关系图对比,验证了推导的拓扑荷数探测概率解析表达式的正确性。通过该表达式可进一步研究大气湍流与涡旋光束相互作用从而影响涡旋光束轨道角动量散射的本质,为涡旋光束的空间光通信中选择合适的拓扑荷数间隔,以及在不同湍流强度下选择合适束腰大小以减少串扰带来的误码率提供了理论依据。
Abstract
Starting from the expression of Laguerre-Gaussian vortex beam and based on Rayleigh diffraction theory, the variation of rotating coherence function of vortex beam propagating in atmospheric turbulence is studied. The crosstalk between the angular momentum of each orbital angular momentum when the vortex beam propagates in atmospheric turbulence is summarized. The topological charge detection probability is used to describe the crosstalk law, and the analytical expression of the topological charge detection probability is derived. The distribution of topological charge number of vortex beam passing through turbulence is studied, and the results are compared with the numerical simulation results of vortex beam passing through atmospheric random phase screen. The relationship between the detection probability of the theoretical and simulated topological charge numbers with the turbulence intensity and the topological charge number of the initial vortex beam is compared, and the correctness of the analytical expression of the topological charge number detection probability is verified. Through this expression, the interaction between atmospheric turbulence and vortex beam can be further studied, which can affect the essence of angular momentum scattering of vortex beam, and the suitable topological charge number interval can be selected for the space optical communication of vortex beam. It also provides a theoretical basis for selecting the appropriate beam waist size under different turbulence intensities to reduce the bit error rate (BER) caused by crosstalk.
参考文献

[1] 柯熙政, 王姣. 涡旋光束的产生、传输、检测及应用[M]. 北京: 科学出版社, 2018.

    Ke X Z, Wang J. Generation, transmission, detection and application of vortex beams[M]. Beijing: Science Press, 2018.

[2] Chen R S, Wang J H, Zhang X Q, et al. Fiber-based mode converter for generating optical vortex beams[J]. Opto-Electronic Advances, 2018, 1(7): 180003.

[3] Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448–5456.

[4] Wei S B, Wang D P, Lin J, et al. Demonstration of orbital angular momentum channel healing using a Fabry-Pérot cavity[J]. Opto-Electronic Advances, 2018, 1(5): 180006.

[5] 吕宏, 柯熙政. 具轨道角动量光束用于光通信编码及解码研究[J]. 光学学报, 2009, 29(2): 331–335.

    Lv H, Ke X Z. Research on the beam with orbital angular momentum used in encoding and decoding of optical communication[J]. Acta Optica Sinica, 2009, 29(2): 331–335.

[6] Yue Y, Bozinovic N, Ren Y X, et al. 1.6-Tbit/s muxing, transmission and demuxing through 1.1-km of vortex fiber carrying 2 OAM beams each with 10 wavelength channels[C]//Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, 2013.

[7] Ren Y X, Huang H, Xie G D, et al. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing[J]. Optics Letters, 2013, 38(20): 4062–4065.

[8] Malik M, O’Sullivan M, Rodenburg B, et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding[J]. Optics Express, 2012, 20(12): 13195–13200.

[9] 陈斐楠, 陈晶晶, 赵琦, 等. 高阶贝塞尔高斯光束在非柯尔莫哥诺夫大气中的传输特性[J]. 中国激光, 2012, 39(9): 913001.

    Chen F N, Chen J J, Zhao Q, et al. Properties of high order bessel gaussian beam propagation in non-kolmogorov atmosphere turbulence[J]. Chinese Journal of Lasers, 2012, 39(9): 913001.

[10] 江月松, 张新岗, 王帅会, 等. 部分相干贝塞尔高斯光束在非柯尔莫哥诺夫湍流中的传输特性[J]. 光子学报, 2014, 43(1): 101001.

    Jang Y S, Zhang X G, Wang S H, et al. Propagation of partially coherent bessel-gaussian beams in non-kolmogorov turbulence[J]. Acta Photonica Sinica, 2014, 43(1): 101001.

[11] 柯熙政, 王超珍. 部分相干涡旋光束在大气湍流中传输时的光强分布[J]. 激光与光电子学进展, 2016, 53(11): 110604.

    Ke X Z, Wang C Z. Intensity distribution of the partially coherent vortex beams propagating in atmospheric turbulence[J]. Laser & Optoelectronics Progress, 2016, 53(11): 110604.

[12] 柯熙政, 王超珍. 部分相干离轴涡旋光束在大气湍流中的光强分布[J]. 光学学报, 2017, 37(1): 0101005.

    Ke X Z, Wang C Z. Intensity distribution of partially coherent off-axis vortex beam propagating in atmospheric turbulence[J]. Acta Optica Sinica, 2017, 37(1): 0101005.

[13] Paterson C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication[J]. Physical Review Letters, 2005, 94(15): 153901.

[14] Anguita J A, Neifeld M A, Vasic B V. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link[J]. Applied Optics, 2008, 47(13): 2414–2429.

[15] Tyler G A, Boyd R W. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum[J]. Optics Letters, 2009, 34(2): 142–144.

[16] Zhang Y X, Cang J. Effects of turbulent aberrations on probability distribution of orbital angular momentum for optical communication[J]. Chinese Physics Letters, 2009, 26(7): 074220.

[17] 黎芳, 唐华, 江月松, 等. 拉盖尔-高斯光束在湍流大气中的螺旋谱特性[J]. 物理学报, 2011, 60(1): 014204.

    Li F, Tang H, Jiang Y S, et al. Spiral spectrum of laguerre-gaussian beams propagating in turbulent atmosphere[J]. Acta Physica Sinica, 2011, 60(1): 014204.

[18] Torner L, Torres J P, Carrasco S. Digital spiral imaging[J]. Optics Express, 2005, 13(3): 873–881.

[19] 黎芳. 涡旋光束在中强度湍流大气中的传输特性[J]. 激光与光电子学进展, 2013, 50(7): 070101.

    Li F. Propagation characteristics of optical vortices beam in intermediate fluctuation turbulent atmosphere[J]. Laser & Optoelectronics Progress, 2013, 50(7): 070101.

[20] Cheng M J, Guo L X, Li J T, et al. Propagation of an optical vortex carried by a partially coherent laguerre–gaussian beam in turbulent ocean[J]. Applied Optics, 2016, 55(17): 4642–4648.

[21] Zhang W Y, Kuzyk M G. Effect of a thin optical Kerr medium on a laguerre-gaussian beam[J]. Applied Physics Letters, 2006, 89(10): 101103.

[22] 丁攀峰. 整数与分数阶涡旋光束相位奇点的稳定性分析[J]. 华中科技大学学报(自然科学版), 2011, 39(5): 118–122.

    Ding P F. Stabilization analysis of phase singularity of vortex beams with integral and fractional orders[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(5): 118–122.

[23] He H, Friese M E J, Heckenberg N R, et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity[J]. Physical Review Letters, 1995, 75(5): 826–829.

[24] Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products[M]. New York: Academic Press, 2014.

[25] 王立瑾, 李强, 魏宏刚, 等. 大气湍流随机相位屏的数值模拟和验证[J]. 光电工程, 2007, 34(3): 1–4, 9.

    Wang L J, Li Q, Wei H G, et al. Numerical simulation and validation of phase screen distorted by atmospheric turbulence[J]. Opto-Electronic Engineering, 2007, 34(3): 1–4, 9.

[26] 邹丽, 赵生妹, 王乐. 大气湍流对轨道角动量态复用系统通信性能的影响[J]. 光子学报, 2014, 43(9): 0901001.

    Zou L, Zhao S M, Wang L. The effects of atmospheric turbulence on orbital angular momentum-multiplexed system[J]. Acta Photonica Sinica, 2014, 43(9): 0901001.

[27] 王飞, 余佳益, 刘显龙, 等. 部分相干光束经过湍流大气传输研究进展[J]. 物理学报, 2018, 67(18): 184203.

    Wang F, Yu J Y, Liu X L, et al. Research progress of partially coherent beams propagation in turbulent atmosphere[J]. Acta Physica Sinica, 2018, 67(18): 184203.

[28] 彭浩. 随机并行梯度下降波前控制算法研究[D]. 长沙: 国防科学技术大学, 2008.

    Peng H. Research of the sotchastic parallel gradient descent algorithm for wavefront control technique[D]. Changsha: National University of Defense Technology, 2008.

[29] Lane R G, Glindemann A, Dainty J. Simulation of a Kolmogorov phase screen[J]. Waves in Random Media, 1992, 2(3): 209–224.

张利宏, 沈锋, 兰斌. 涡旋光束轨道角动量在大气湍流传输下的特性分析[J]. 光电工程, 2020, 47(4): 190272. Zhang Lihong, Shen Feng, Lan Bin. Characteristic analysis of orbital angular momentum of vortex beam propagating in atmospheric turbulent[J]. Opto-Electronic Engineering, 2020, 47(4): 190272.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!