Matter and Radiation at Extremes, 2017, 2 (3): 105, Published Online: Jan. 17, 2018  

Review of supershort avalanche electron beam during nanosecond-pulse discharges in some gases

Author Affiliations
1 Laboratory of Optical Radiation of the Institute of High Current Electronics, Tomsk 634055, Russia
2 National Research Tomsk State University, Tomsk 634050, Russia
3 National Research Tomsk Polytechnic University, Tomsk 634050, Russia
4 Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
Copy Citation Text

Victor F. Tarasenko, Cheng Zhang, Evgenii Kh. Baksht , Alexander G. Burachenko , Tao Shao, Dmitry V. Beloplotov , Mikhail I. Lomaev , Ping Yan, Andrey V. Kozyrev , Natalia S. Semeniuk . Review of supershort avalanche electron beam during nanosecond-pulse discharges in some gases[J]. Matter and Radiation at Extremes, 2017, 2(3): 105.

References

[1] V.F. Tarasenko, E.Kh. Baksht, A.G. Burachenko, I.D. Kostyrya, M.I. Lomaev, et al., Generation of supershort avalanche electron beams and formation of diffuse discharges in different gases at high pressure, Plasma Dev. Oper. 16 (2008) 267-298.

[2] D. Levko, Ya.E. Krasik, V.F. Tarasenko, Present status of runaway electron generation in pressurized gases during nanosecond discharges, Int. Rev. Phys. 6 (2) (2012) 165-195.

[3] V.F. Tarasenko (Ed.), Runaway Electrons Preionized Diffuse Discharges, Nova Science, New York, 2014.

[4] V.F. Tarasenko, V.M. Orlovskii, S.A. Shunailov, Forming of an electron beam and a volume discharge in air at atmospheric pressure, Russ. Phys. J. 46 (2003) 325-327.

[5] L.V. Tarasova, L.N. Khudyakova, T.V. Loiko, V.A. Tsukerman, the fast electrons and X-ray radiation of nanosecond pulsed discharges in gases under 0.1 760 Torr,, Tech. Phys. 44 (1974) 564-568.

[6] L.P. Babich, High-energy Phenomena in Electric Discharges in Dense Gases: theory, Experiment, and Natural Phenomena, ISTC Science and Technology Series vol. 2, Futurepast, Arlington, VA, 2003.

[7] L.P. Babich, T.V. Loiko, Peculiarities of detecting pulses of runaway electrons and X-rays generated by high-voltage nanosecond discharges in open atmosphere, Plasma Phys. Rep. 36 (2010) 263-270.

[8] S.B. Alekseev, V.M. Orlovskii, V.F. Tarasenko, Electron beam formed in a diode filled with air or nitrogen at atmospheric pressure, Tech. Phys. Lett. 29 (2003) 411-413.

[9] I.D. Kostyrya, E.Kh. Baksht, V.F. Tarasenko, An efficient cathode for generating a super short avalanche electron beams in air at atmospheric pressure, Instrum. Exp. Tech. 53 (2010) 545-548.

[10] I.D. Kostyrya, D.V. Rybka, V.F. Tarasenko, the amplitude and current pulse duration of a supershort avalanche electron beam in air at atmospheric pressure, Instrum. Exp. Tech. 55 (2012) 72-77.

[11] V.F. Tarasenko, D.V. Rybka, E.Kh. Baksht, I.Dm. Kostyrya, M.I. Lomaev, On the generation of supershort avalanche electron beams and X-radiation during nanosecond discharges in dense gases (result and discussion), Russ. Phys. J. 50 (2007) 944-954.

[12] V.F. Tarasenko, E.Kh. Baksht, A.G. Burachenko, I.D. Kostyrya, M.I. Lomaev, et al., Supershort avalanche electron beam generation in gases, Laser Part. Beams 26 (2008) 605-617.

[13] V.F. Tarasenko, D.V. Rybka, E.H. Baksht, I.Dm. Kostyrya, M.I. Lomaev, Generation and measurement of subnanosecond electron beams in gasfilled diodes, Instrum. Exp. Tech. 51 (2008) 213-219.

[14] V.F. Tarasenko, Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air, Plasma Phys. Rep. 37 (2011) 409-421.

[15] V.F. Tarasenko, D.V. Rybka, Methods for recording the time profile of single ultrashort pulses of electron beams and discharge currents in realtime mode, High. Volt. 1 (2016) 43-51.

[16] V.F. Tarasenko, I.D. Kostyrya, E.Kh. Baksht, D.V. Rybka, SLEP-150M compact supershort avalanche electron beam accelerator, IEEE Trans. Dielect. Electr. Insul. 18 (2011) 1250-1255.

[17] C. Zhang, V.F. Tarasenko, T. Shao, E.Kh. Baksht, D.V. Rybka, Effect of cathode materials on the generation of runaway electron beams and Xrays in atmospheric pressure air, Laser Part. Beams 31 (2013) 353-364.

[18] V.F. Tarasenko, V.S. Skakun, I.Dm. Kostyrya, S.B. Alekseev, V.M. Orlovskii, On formation of subnanosecond electron beams in air under atmospheric pressure, Laser Part. Beam 22 (2004) 75-82.

[19] V.F. Tarasenko, S.A. Shunailov, V.G. Shpak, I.D. Kostyrya, Supershort electron beam from air filled diode at atmospheric pressure, Laser Part. Beams 23 (2005) 545-551.

[20] V.F. Tarasenko, E.Kh.Baksht,A.G. Burachenko, I.D.Kostyrya,D.V. Rybka, Energy of electrons generated during a subnanosecond breakdown in atmospheric-pressure air, Plasma Phys. Rep. 39 (2013) 592-599.

[21] E.Kh. Baksht, A.G. Burachenko, V.F. Tarasenko, Effect of the cathode material on the amplitude of the ultrashort avalanche electron beam in atmospheric-pressure air, Tech. Phys. 60 (2015) 1645-1650.

[22] V.F. Tarasenko, E.Kh. Baksht, A.G. Burachenko, M.I. Lomaev, D.A. Sorokin, Modes of generation of runaway electron beams in He, H2, Ne, and N2 at a pressure of 1-760 Torr, IEEE Trans. Plasma Sci. 38 (2010) 2583-2587.

[23] S.N. Ivanov, the transition of electrons to continuous acceleration mode at subnanosecond pulsed electric breakdown in high-pressure gases,, J. Phys. D. Appl. Phys. 46 (2013) 285201.

[24] E.Kh. Baksht, M.I. Lomaev, D.V. Rybka, V.F. Tarasenko, High-currentdensity subnanosecond electron beams formed in a gas-filled diode at low pressures, Tech. Phys. Lett. 32 (2006) 948-950.

[25] E.Kh. Baksht, A.G. Burachenko, M.V. Erofeev, M.I. Lomaev, D.V. Rybka, et al., Nanosecond discharge in sulfur hexafluoride and the generation of an ultrashort avalanche electron beam, Laser Phys. 18 (2008) 732-737.

[26] V.F. Tarasenko, M.V. Erofeev, M.I. Lomaev, D.A. Sorokin, D.V. Rybka, Two component structure of the current pulse of runaway electron beam generated during electron breakdown of elevated pressure nitrogen, Plasma Phys. Rep. 38 (2012) 922-929.

[27] V.F. Tarasenko, D.V. Rybka, A.G. Burachenko, M.I. Lomaev, E.V. Balzovsky, Measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air, Rev. Sci. Instrum. 83 (2012) 086106.

[28] I.D. Kostyrya, D.V. Rybka, V.F. Tarasenko, A.V. Kozyrev, E.Kh. Baksht, Occurrence of runaway electrons behind the cathode under subnanosecond breakdown of air at atmospheric pressure, Russ. Phys. J. 55 (2013) 1493-1496.

[29] V.F. Tarsenko, Nanosecond discharge in air at atmospheric pressure as an X-ray source with high pulse repetition rates, Appl. Phys. Lett. 88 (2006) 081501.

[30] C. Zhang, T. Shao, Y. Yu, Z. Niu, P. Yan, et al., Detection of X-ray emission in a nanosecond discharge in air at atmospheric pressure, Rev. Sci. Instrum. 81 (2010) 123501.

[31] T. Shao, C. Zhang, Z. Niu, P. Yan, V.F. Tarasenko, et al., Diffuse discharge, runaway electron, and X-ray in atmospheric pressure air in an inhomogeneous electrical field in repetitive pulsed modes, Appl. Phys. Lett. 98 (2011) 021503.

[32] T. Shao, V.F. Tarasenko, C. Zhang, Y.V. Shut’ko, P. Yan, X-ray and runaway electron generation in repetitive pulsed discharges in atmospheric pressure air with a point-to-plane gap, Phys. Plasmas 18 (2011) 053502.

[33] T. Shao, V.F. Tarasenko, C. Zhang, I.D. Kostyrya, H. Jiang, et al., Generation of runaway electrons and X-rays in repetitive nanosecond pulse corona discharge in atmospheric pressure air, Appl. Phys. Expr. 4 (2011) 066001.

[34] T. Shao, C. Zhang, Z. Niu, P. Yan, V.F. Tarasenko, et al., Runaway electron preionized diffuse discharges in atmospheric pressure air with a point-to-plane gap in repetitive pulsed mode, J. Appl. Phys. 109 (2011) 083306.

[35] C. Zhang, T. Shao, V.F. Tarasenko, H. Ma, C. Ren, et al., X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure, Phys. Plasmas 19 (2012) 123516.

[36] T. Shao, V.F. Tarasenko, C. Zhang, E.Kh. Baksht, P. Yan, et al., Repetitive nanosecond-pulse discharge in a highly nonuniform electric field in atmospheric air: X-ray emission and runaway electron generation, Laser Part. Beams 30 (2012) 369-378.

[37] M.V. Erofeev, E.Kh. Baksht, V.F. Tarasenko, Y.V. Shut’ko, Generation of runaway electrons in a nonuniform electric field by applying nanosecond voltage pulses with a frequency of 100-1000 Hz, Tech. Phys. 58 (2013) 200-206.

[38] C. Zhang, J. Gu, R. Wang, H. Ma, P. Yan, et al., Simulation of runaway electron inception and breakdown in nanosecond pulse gas discharges, Laser Part Beams 34 (2016) 43-52.

[39] T. Shao, V.F. Tarasenko, C. Zhang, D.V. Beloplotov, A.G. Burachenko, et al., Application of dynamic displacement current for diagnostics of subnanosecond breakdowns in an inhomogeneous electric field, Rev. Sci. Instrum. 84 (2013) 053506.

[40] L.P. Babich, T.V. Loiko, Runaway electrons at high voltage nanosecond discharges in sulfur hexafluoride at pressure of 1 atm, Tech. Phys. 61 (1991) 153-155.

[41] L.P. Babich, T.V. Loiko, Energy spectra and time parameters of the runaway electrons at a nanosecond breakdown in dense gases, Tech. Phys. 55 (1985) 956-958.

[42] E.K. Baksht, A.G. Burachenko, V.Yu. Kozhevnikov, A.V. Kozyrev, I.D. Kostyrya, et al., Spectrum of fast electrons in a subnanosecond breakdown of air-filled diodes at atmospheric pressure, J. Phys. D. Appl. Phys. 43 (2010) 305201.

[43] G.A. Mesyats, A.G. Reutova, K.A. Sharypov, V.G. Shpak, S.A. Shunailov, et al., On the observed energy of runaway electron beams in air, Laser Part. Beams 29 (2011) 425-435.

[44] F.Ya. Zagulov, A.S. Kotov, V.G. Shpak, Y.Ya. Yurike, M.I. Yalandin, RADAN series of compact high-current periodic-pulse electron accelerators, Instrum. Experim. Tech. 32 (1989) 420-423.

[45] G.A. Mesyats, S.D. Korovin, K.A. Sharypov, V.G. Shpak, S.A. Shunailov, et al., Dynamics of subnanosecond electron beam formation in gas-filled and vacuum diodes, Tech. Phys. Lett. 32 (2006) 18-22.

[46] M.I. Yalandin, V.G. Shpak, Compact high-power subnanosecond repetitive-pulse generators, Instrum. Experim. Tech. 44 (2001) 285-310.

[47] C. Zhang, V.F. Tarasenko, T. Shao, D.V. Beloplotov, M.I. Lomaev, et al., Generation of super-short avalanche electron beams in SF6, Laser Part. Beam 32 (2014) 331-341.

[48] C. Zhang, V. Tarasenko, J. Gu, E. Baksht, R. Wang, et al., A comparison between spectra of runaway electron beams in SF6 and air, Phys. Plasmas 22 (2015) 123516.

[49] C. Zhang, V.F. Tarasenko, J. Gu, E.K. Baksht, D.V. Beloplotov, et al., Supershort avalanche electron beam in SF6 and krypton, Phys. Rev. Accel. Beams 19 (2016) 030402.

[50] R.W.F. Gross, J.F. Bott (Eds.), Handbook of Chemical Lasers, Wiley- Interscience, New-York, 1976.

[51] S.B. Alekseev, M.I. Lomaev, D.V. Rybka, V.F. Tarasenko, T. Shao, et al., Generation of runaway electrons in atmospheric pressure air under 30- 200 kV voltage pulses of rise time 1.5 ns, High. Volt. Eng. 39 (2013) 2112-2118.

[52] C. Zhang, H. Ma, T. Shao, Q. Xie, W. Yang, et al., Runaway electron beams in nanosecond-pulse discharges, Acta Phys. Sin. 63 (2014) 320-326.

[53] D. Levko, V.Tz. Gurovich, Y.E. Krasik, Conductivity of nanosecond discharges in nitrogen and sulfur hexafluoride studied by particle-in-cell simulations, J. Appl. Phys. 111 (2012) 123303.

[54] E.Kh. Baksht, A.G. Burachenko, I.D. Kostyrya, M.I. Lomaev, D.V. Rybka, et al., Runaway-electron-preionized diffuse discharge at atmospheric pressure and its application, J. Phys. D. Appl. Phys. 42 (2009) 185201.

[55] V.F. Tarasenko, Efficiency of a nitrogen UV laser pumped by a selfsustained discharge, Quantum Electron 31 (2001) 489-494.

[56] V.Yu. Kozhevnikov, A.V. Kozyrev, N.S. Semeniuk, 1D simulation of runaway electrons generation in pulsed high-pressure gas discharge, Europhys. Lett. 112 (2015) 15001.

[57] T. Tabata, R. Ito, A generalized empirical equation for the transmission coefficient of electrons, Nucl. Instrum. Methods 127 (1975) 429-434.

Victor F. Tarasenko, Cheng Zhang, Evgenii Kh. Baksht , Alexander G. Burachenko , Tao Shao, Dmitry V. Beloplotov , Mikhail I. Lomaev , Ping Yan, Andrey V. Kozyrev , Natalia S. Semeniuk . Review of supershort avalanche electron beam during nanosecond-pulse discharges in some gases[J]. Matter and Radiation at Extremes, 2017, 2(3): 105.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!