Matter and Radiation at Extremes, 2017, 2 (3): 105, Published Online: Jan. 17, 2018  

Review of supershort avalanche electron beam during nanosecond-pulse discharges in some gases

Author Affiliations
1 Laboratory of Optical Radiation of the Institute of High Current Electronics, Tomsk 634055, Russia
2 National Research Tomsk State University, Tomsk 634050, Russia
3 National Research Tomsk Polytechnic University, Tomsk 634050, Russia
4 Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
Abstract
Supershort avalanche electron beam (SAEB) plays an important role in nanosecond-pulse discharges. this paper aims at reviewing experiments results on characteritics of SAEB and its spectra in different gases in nanosecond-pulse discharges. All the joint experiments were carried in the Institute of High Current Electronics of the Russian Academy of Sciences and the Institute of Electrical Engineering of the Chinese Academy of Sciences. In these experiments, the generation of a SAEB in SF6 in an inhomogeneous electric field was studied on three generators with pulse rise times of 0.3, 0.5 and ~2 ns. Firstly, the comparison of SAEB parameters in SF6 with those obtained in other gases (air, nitrogen, argon, and krypton) is introduced. Secondly, the SAEB spectra in SF6 and air at pressures of 10 kPa (75 torr), and 0.1 MPa (750 torr) are reviewed and discussed. Finally, 1.5-D theoretical simulation of the supershort pulse of the fast electron beam in a coaxial diode filled with SF6 at atmospheric pressure is described. the simulation was carried out in the framework of hybrid model for discharge and runaway electron kinetics. the above research progress can provide better understanding of the investigation into the mechanism of nanosecond-pulse discharges.
References

[1] V.F. Tarasenko, E.Kh. Baksht, A.G. Burachenko, I.D. Kostyrya, M.I. Lomaev, et al., Generation of supershort avalanche electron beams and formation of diffuse discharges in different gases at high pressure, Plasma Dev. Oper. 16 (2008) 267-298.

[2] D. Levko, Ya.E. Krasik, V.F. Tarasenko, Present status of runaway electron generation in pressurized gases during nanosecond discharges, Int. Rev. Phys. 6 (2) (2012) 165-195.

[3] V.F. Tarasenko (Ed.), Runaway Electrons Preionized Diffuse Discharges, Nova Science, New York, 2014.

[4] V.F. Tarasenko, V.M. Orlovskii, S.A. Shunailov, Forming of an electron beam and a volume discharge in air at atmospheric pressure, Russ. Phys. J. 46 (2003) 325-327.

[5] L.V. Tarasova, L.N. Khudyakova, T.V. Loiko, V.A. Tsukerman, the fast electrons and X-ray radiation of nanosecond pulsed discharges in gases under 0.1 760 Torr,, Tech. Phys. 44 (1974) 564-568.

[6] L.P. Babich, High-energy Phenomena in Electric Discharges in Dense Gases: theory, Experiment, and Natural Phenomena, ISTC Science and Technology Series vol. 2, Futurepast, Arlington, VA, 2003.

[7] L.P. Babich, T.V. Loiko, Peculiarities of detecting pulses of runaway electrons and X-rays generated by high-voltage nanosecond discharges in open atmosphere, Plasma Phys. Rep. 36 (2010) 263-270.

[8] S.B. Alekseev, V.M. Orlovskii, V.F. Tarasenko, Electron beam formed in a diode filled with air or nitrogen at atmospheric pressure, Tech. Phys. Lett. 29 (2003) 411-413.

[9] I.D. Kostyrya, E.Kh. Baksht, V.F. Tarasenko, An efficient cathode for generating a super short avalanche electron beams in air at atmospheric pressure, Instrum. Exp. Tech. 53 (2010) 545-548.

[10] I.D. Kostyrya, D.V. Rybka, V.F. Tarasenko, the amplitude and current pulse duration of a supershort avalanche electron beam in air at atmospheric pressure, Instrum. Exp. Tech. 55 (2012) 72-77.

[11] V.F. Tarasenko, D.V. Rybka, E.Kh. Baksht, I.Dm. Kostyrya, M.I. Lomaev, On the generation of supershort avalanche electron beams and X-radiation during nanosecond discharges in dense gases (result and discussion), Russ. Phys. J. 50 (2007) 944-954.

[12] V.F. Tarasenko, E.Kh. Baksht, A.G. Burachenko, I.D. Kostyrya, M.I. Lomaev, et al., Supershort avalanche electron beam generation in gases, Laser Part. Beams 26 (2008) 605-617.

[13] V.F. Tarasenko, D.V. Rybka, E.H. Baksht, I.Dm. Kostyrya, M.I. Lomaev, Generation and measurement of subnanosecond electron beams in gasfilled diodes, Instrum. Exp. Tech. 51 (2008) 213-219.

[14] V.F. Tarasenko, Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air, Plasma Phys. Rep. 37 (2011) 409-421.

[15] V.F. Tarasenko, D.V. Rybka, Methods for recording the time profile of single ultrashort pulses of electron beams and discharge currents in realtime mode, High. Volt. 1 (2016) 43-51.

[16] V.F. Tarasenko, I.D. Kostyrya, E.Kh. Baksht, D.V. Rybka, SLEP-150M compact supershort avalanche electron beam accelerator, IEEE Trans. Dielect. Electr. Insul. 18 (2011) 1250-1255.

[17] C. Zhang, V.F. Tarasenko, T. Shao, E.Kh. Baksht, D.V. Rybka, Effect of cathode materials on the generation of runaway electron beams and Xrays in atmospheric pressure air, Laser Part. Beams 31 (2013) 353-364.

[18] V.F. Tarasenko, V.S. Skakun, I.Dm. Kostyrya, S.B. Alekseev, V.M. Orlovskii, On formation of subnanosecond electron beams in air under atmospheric pressure, Laser Part. Beam 22 (2004) 75-82.

[19] V.F. Tarasenko, S.A. Shunailov, V.G. Shpak, I.D. Kostyrya, Supershort electron beam from air filled diode at atmospheric pressure, Laser Part. Beams 23 (2005) 545-551.

[20] V.F. Tarasenko, E.Kh.Baksht,A.G. Burachenko, I.D.Kostyrya,D.V. Rybka, Energy of electrons generated during a subnanosecond breakdown in atmospheric-pressure air, Plasma Phys. Rep. 39 (2013) 592-599.

[21] E.Kh. Baksht, A.G. Burachenko, V.F. Tarasenko, Effect of the cathode material on the amplitude of the ultrashort avalanche electron beam in atmospheric-pressure air, Tech. Phys. 60 (2015) 1645-1650.

[22] V.F. Tarasenko, E.Kh. Baksht, A.G. Burachenko, M.I. Lomaev, D.A. Sorokin, Modes of generation of runaway electron beams in He, H2, Ne, and N2 at a pressure of 1-760 Torr, IEEE Trans. Plasma Sci. 38 (2010) 2583-2587.

[23] S.N. Ivanov, the transition of electrons to continuous acceleration mode at subnanosecond pulsed electric breakdown in high-pressure gases,, J. Phys. D. Appl. Phys. 46 (2013) 285201.

[24] E.Kh. Baksht, M.I. Lomaev, D.V. Rybka, V.F. Tarasenko, High-currentdensity subnanosecond electron beams formed in a gas-filled diode at low pressures, Tech. Phys. Lett. 32 (2006) 948-950.

[25] E.Kh. Baksht, A.G. Burachenko, M.V. Erofeev, M.I. Lomaev, D.V. Rybka, et al., Nanosecond discharge in sulfur hexafluoride and the generation of an ultrashort avalanche electron beam, Laser Phys. 18 (2008) 732-737.

[26] V.F. Tarasenko, M.V. Erofeev, M.I. Lomaev, D.A. Sorokin, D.V. Rybka, Two component structure of the current pulse of runaway electron beam generated during electron breakdown of elevated pressure nitrogen, Plasma Phys. Rep. 38 (2012) 922-929.

[27] V.F. Tarasenko, D.V. Rybka, A.G. Burachenko, M.I. Lomaev, E.V. Balzovsky, Measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air, Rev. Sci. Instrum. 83 (2012) 086106.

[28] I.D. Kostyrya, D.V. Rybka, V.F. Tarasenko, A.V. Kozyrev, E.Kh. Baksht, Occurrence of runaway electrons behind the cathode under subnanosecond breakdown of air at atmospheric pressure, Russ. Phys. J. 55 (2013) 1493-1496.

[29] V.F. Tarsenko, Nanosecond discharge in air at atmospheric pressure as an X-ray source with high pulse repetition rates, Appl. Phys. Lett. 88 (2006) 081501.

[30] C. Zhang, T. Shao, Y. Yu, Z. Niu, P. Yan, et al., Detection of X-ray emission in a nanosecond discharge in air at atmospheric pressure, Rev. Sci. Instrum. 81 (2010) 123501.

[31] T. Shao, C. Zhang, Z. Niu, P. Yan, V.F. Tarasenko, et al., Diffuse discharge, runaway electron, and X-ray in atmospheric pressure air in an inhomogeneous electrical field in repetitive pulsed modes, Appl. Phys. Lett. 98 (2011) 021503.

[32] T. Shao, V.F. Tarasenko, C. Zhang, Y.V. Shut’ko, P. Yan, X-ray and runaway electron generation in repetitive pulsed discharges in atmospheric pressure air with a point-to-plane gap, Phys. Plasmas 18 (2011) 053502.

[33] T. Shao, V.F. Tarasenko, C. Zhang, I.D. Kostyrya, H. Jiang, et al., Generation of runaway electrons and X-rays in repetitive nanosecond pulse corona discharge in atmospheric pressure air, Appl. Phys. Expr. 4 (2011) 066001.

[34] T. Shao, C. Zhang, Z. Niu, P. Yan, V.F. Tarasenko, et al., Runaway electron preionized diffuse discharges in atmospheric pressure air with a point-to-plane gap in repetitive pulsed mode, J. Appl. Phys. 109 (2011) 083306.

[35] C. Zhang, T. Shao, V.F. Tarasenko, H. Ma, C. Ren, et al., X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure, Phys. Plasmas 19 (2012) 123516.

[36] T. Shao, V.F. Tarasenko, C. Zhang, E.Kh. Baksht, P. Yan, et al., Repetitive nanosecond-pulse discharge in a highly nonuniform electric field in atmospheric air: X-ray emission and runaway electron generation, Laser Part. Beams 30 (2012) 369-378.

[37] M.V. Erofeev, E.Kh. Baksht, V.F. Tarasenko, Y.V. Shut’ko, Generation of runaway electrons in a nonuniform electric field by applying nanosecond voltage pulses with a frequency of 100-1000 Hz, Tech. Phys. 58 (2013) 200-206.

[38] C. Zhang, J. Gu, R. Wang, H. Ma, P. Yan, et al., Simulation of runaway electron inception and breakdown in nanosecond pulse gas discharges, Laser Part Beams 34 (2016) 43-52.

[39] T. Shao, V.F. Tarasenko, C. Zhang, D.V. Beloplotov, A.G. Burachenko, et al., Application of dynamic displacement current for diagnostics of subnanosecond breakdowns in an inhomogeneous electric field, Rev. Sci. Instrum. 84 (2013) 053506.

[40] L.P. Babich, T.V. Loiko, Runaway electrons at high voltage nanosecond discharges in sulfur hexafluoride at pressure of 1 atm, Tech. Phys. 61 (1991) 153-155.

[41] L.P. Babich, T.V. Loiko, Energy spectra and time parameters of the runaway electrons at a nanosecond breakdown in dense gases, Tech. Phys. 55 (1985) 956-958.

[42] E.K. Baksht, A.G. Burachenko, V.Yu. Kozhevnikov, A.V. Kozyrev, I.D. Kostyrya, et al., Spectrum of fast electrons in a subnanosecond breakdown of air-filled diodes at atmospheric pressure, J. Phys. D. Appl. Phys. 43 (2010) 305201.

[43] G.A. Mesyats, A.G. Reutova, K.A. Sharypov, V.G. Shpak, S.A. Shunailov, et al., On the observed energy of runaway electron beams in air, Laser Part. Beams 29 (2011) 425-435.

[44] F.Ya. Zagulov, A.S. Kotov, V.G. Shpak, Y.Ya. Yurike, M.I. Yalandin, RADAN series of compact high-current periodic-pulse electron accelerators, Instrum. Experim. Tech. 32 (1989) 420-423.

[45] G.A. Mesyats, S.D. Korovin, K.A. Sharypov, V.G. Shpak, S.A. Shunailov, et al., Dynamics of subnanosecond electron beam formation in gas-filled and vacuum diodes, Tech. Phys. Lett. 32 (2006) 18-22.

[46] M.I. Yalandin, V.G. Shpak, Compact high-power subnanosecond repetitive-pulse generators, Instrum. Experim. Tech. 44 (2001) 285-310.

[47] C. Zhang, V.F. Tarasenko, T. Shao, D.V. Beloplotov, M.I. Lomaev, et al., Generation of super-short avalanche electron beams in SF6, Laser Part. Beam 32 (2014) 331-341.

[48] C. Zhang, V. Tarasenko, J. Gu, E. Baksht, R. Wang, et al., A comparison between spectra of runaway electron beams in SF6 and air, Phys. Plasmas 22 (2015) 123516.

[49] C. Zhang, V.F. Tarasenko, J. Gu, E.K. Baksht, D.V. Beloplotov, et al., Supershort avalanche electron beam in SF6 and krypton, Phys. Rev. Accel. Beams 19 (2016) 030402.

[50] R.W.F. Gross, J.F. Bott (Eds.), Handbook of Chemical Lasers, Wiley- Interscience, New-York, 1976.

[51] S.B. Alekseev, M.I. Lomaev, D.V. Rybka, V.F. Tarasenko, T. Shao, et al., Generation of runaway electrons in atmospheric pressure air under 30- 200 kV voltage pulses of rise time 1.5 ns, High. Volt. Eng. 39 (2013) 2112-2118.

[52] C. Zhang, H. Ma, T. Shao, Q. Xie, W. Yang, et al., Runaway electron beams in nanosecond-pulse discharges, Acta Phys. Sin. 63 (2014) 320-326.

[53] D. Levko, V.Tz. Gurovich, Y.E. Krasik, Conductivity of nanosecond discharges in nitrogen and sulfur hexafluoride studied by particle-in-cell simulations, J. Appl. Phys. 111 (2012) 123303.

[54] E.Kh. Baksht, A.G. Burachenko, I.D. Kostyrya, M.I. Lomaev, D.V. Rybka, et al., Runaway-electron-preionized diffuse discharge at atmospheric pressure and its application, J. Phys. D. Appl. Phys. 42 (2009) 185201.

[55] V.F. Tarasenko, Efficiency of a nitrogen UV laser pumped by a selfsustained discharge, Quantum Electron 31 (2001) 489-494.

[56] V.Yu. Kozhevnikov, A.V. Kozyrev, N.S. Semeniuk, 1D simulation of runaway electrons generation in pulsed high-pressure gas discharge, Europhys. Lett. 112 (2015) 15001.

[57] T. Tabata, R. Ito, A generalized empirical equation for the transmission coefficient of electrons, Nucl. Instrum. Methods 127 (1975) 429-434.

Victor F. Tarasenko, Cheng Zhang, Evgenii Kh. Baksht , Alexander G. Burachenko , Tao Shao, Dmitry V. Beloplotov , Mikhail I. Lomaev , Ping Yan, Andrey V. Kozyrev , Natalia S. Semeniuk . Review of supershort avalanche electron beam during nanosecond-pulse discharges in some gases[J]. Matter and Radiation at Extremes, 2017, 2(3): 105.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!