红外与毫米波学报, 2018, 37 (3): 261, 网络出版: 2018-07-30  

一种用于非制冷红外焦平面阵列的低噪声高均匀性读出电路

A low noise and high uniformity readout integrated circuit for IFPA applications
作者单位
1 南京理工大学 机械工程学院, 江苏 南京 210094
2 清华大学 电子工程系, 北京 100084
摘要
提出了一种高均匀性低噪声的读出电路, 该电路通过抑制非制冷红外焦平面阵列固定模式噪声, 从而可实现高质量的红外图像.该电路前端采用了行共享的增益可控NMOS管抑制像元固定模式噪声, 同时采用了新型的相关双采样电路抑制列固定模式噪声.在仿真基础上, 采用了AMS 0.35 μm CMOS工艺完成了16 × 16像元芯片的制备.对芯片的大量测试结果表明提出的读出电路可以有效地降低非制冷红外焦平面阵列的固定模式噪声, 同时具有高均匀性的特点, 适用于高性能非制冷红外探测器.
Abstract
This paper proposed a readout integrated circuit (ROIC) with high uniformity and low-noise, by mitigating the fixed patter noise (FPN) of Infrared focal plane arrays (IFPA) to acquire high-quality infrared images. The row shared gain-controlling NMOS transistors are adopted in front-end circuit to reduce the pixel FPN. Furthermore, a novel correlated double sampling (CDS) structure is proposed to reduce the column FPN. Based on the simulation results, a 16×16 experimental chip has been manufactured adopting AMS 0.35 μm CMOS process. Extensive experiments have been implemented to verify the function and performance of the proposed readout circuit. The test results demonstrate the ROIC with the inherent advantages of low FPN and high uniformity, which makes it suitable for the application of high performance IFPA.
参考文献

[1] Hsieh C C, Wu C Y, Jih F W,et al. Focal-plane-arrays and CMOS readout techniques of infrared imaging systems[J]. IEEE Transactions on Circuits & Systems for Video Technology, 1997, 7(4):594-605.

[2] Jo Y M, Woo D H, Kang S G, et al. Very Wide Dynamic Range ROIC With Pixel-Level ADC for SWIR FPAs[J]. IEEE Sensors Journal, 2016, 16(19):7227-7233.

[3] Chen X, Lv Q. A versatile CMOS readout integrated circuit for microbolometric infrared focal plane arrays[J]. Optik -International Journal for Light and Electron Optics, 2013, 124(20):4639-4641.

[4] Zhao H, Liu X, Xu C. A low power cryogenic 512×512-pixel infrared readout integrated circuit with modified MOS device model[J]. Infrared Physics & Technology, 2013, 61:111-119.

[5] Blanksby A J, Loinaz M J. Performance analysis of a color CMOS photogate image sensor[J]. IEEE Transactions on Electron Devices, 2000, 47(1):55-64.

[6] Degerli Y, Lavernhe F, Magnan P, et al. Non-stationary noise responses of some fully differential on-chip readout circuits suitable for CMOS image sensors[J]. IEEE Transactions on Circuits & Systems II Analog & Digital Signal Processing, 1999, 46(12):1461-1474.

[7] Dupont B, Dupret A, Belhaire E, et al. FPN Sources in Bolometric Infrared Detectors[J]. IEEE Sensors Journal, 2009, 9(8):944-952.

[8] Vatteroni M, Covi D, Sartori A. A linear-logarithmic CMOS pixel for high dynamic range behavior with fixed-pattern-noise correction and tunable responsivity[C]. IEEE SENSORS 2008 Conference, 2008, 930-933.

[9] Kim Y S, Woo D H, Jo Y M, et al. Low-Noise and Wide-Dynamic-Range ROIC With a Self-Selected Capacitor for SWIR Focal Plane Arrays[J]. IEEE Sensors Journal, 2017, 17(1), 179-184.

[10] Yonemoto K, Sumi H, Suzuki R, et al. A CMOS image sensor with a simple FPN-reduction technology and a hole accumulated diode[C]. Solid-State Circuits Conference, 2000, 102-103.

[11] Wolf A, Pezoa J E, Figueroa M. Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras[J]. Sensors, 2016, 16(7):1121.

[12] Cruz C A D M, Monteiro D W D L, Souza A K P, et al. Voltage Mode FPN Calibration in the Logarithmic CMOS Imager[J]. IEEE Transactions on Electron Devices, 2015, 62(8):2528-2534.

[13] Dem’yanenko M A, Kozlov A I, Marchishin I V et al. Development of analog-digital readout integrated circuits for infrared focal plane arrays[J]. Optoelectron.Instrument.Proc, 2016, 52(6):630-636.

[14] Woo D H, Nam I K, Lee H C. Smart Reset Control for Wide-Dynamic-Range LWIR FPAs[J]. IEEE Sensors Journal, 2011, 11(1):131-136.

[15] Im S, Park S G. Thermal noise analysis of switched-capacitor integrators with correlated double sampling[J]. International Journal of Circuit Theory & Applications, 2016, 44(12):2101-2113.

[16] Popowicz A. Analysis of correlated double sampling circuit with integration[J]. Przeglad Elektrotechniczny, 2012, 88(2):200-203.

[17] Altun O, Tasdemir F. Low-noise readout circuit for SWIR focal plane arrays[C]. SPIE Defense + Security, 2017:1017707.

[18] Enz C C and Temes G C. Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization[J]. Proceedings of the IEEE, 1996, 84(11):1584-1614.

[19] Wey H, Guggenbuhl W. Noise transfer characteristics of a correlated double sampling circuit[J]. IEEE Transactions on Circuits & Systems, 1986, 33(10):1028-1030.

[20] Kim D, Bae J, Song M. A high speed CMOS image sensor with a novel digital correlated double sampling and a differential difference amplifier[J]. Sensors, 2015, 15(3):5081-5095.

[21] Fieque B, Tissot J L, Trouilleau C. Uncooled microbolometer detector: Recent developments at Ulis[J]. INFRARED PHYSICS & TECHNOLOGY, 2007, 49(3):187-191.

[22] Kim G, Lim S, Kim Y, et al. High-uniformity post-CMOS uncooled microbolometer focal plane array integrated with active matrix circuit[C]. Transducers & Eurosensors Xxvii: the, International Conference on Solid-State Sensors, Actuators and Microsystems. IEEE, 2013:2361-2364.

周同, 何勇, 赵健, 姜波, 苏岩. 一种用于非制冷红外焦平面阵列的低噪声高均匀性读出电路[J]. 红外与毫米波学报, 2018, 37(3): 261. ZHOU Tong, HE Yong, ZHAO Jian, JIANG Bo, SU Yan. A low noise and high uniformity readout integrated circuit for IFPA applications[J]. Journal of Infrared and Millimeter Waves, 2018, 37(3): 261.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!