光谱学与光谱分析, 2016, 36 (3): 788, 网络出版: 2016-12-09   

柠檬渣吸附污水中Hg2+的动力学研究

Study on Kinetic of Hg2+ from Wastewater Absorbed by Lemon Residues
沈王庆 1,2,*王淼 1杨婷 1
作者单位
1 内江师范学院化学化工学院, 四川 内江 641100
2 “果类废弃物资源化”四川省高等学校重点实验室, 四川 内江 641100
摘要
由于农业废弃物价格低廉, 改性后吸附性能优越等优点, 目前利用农业废弃物制作吸附剂吸附污水中的重金属逐渐成为研究热点。 为了研究柠檬渣对污水中Hg2+的吸附动力学, 利用15%硫酸对柠檬渣进行了改性, 测试了吸附剂的孔容与孔径等性能, 并利用差热分析、 红外光谱、 电镜和能谱对样品进行了表征。 结果表明改性柠檬渣吸附Hg2+的吸附速率由膜扩散控制, 符合膜扩散中Lagergren一级动力学方程, 该吸附过程主要为物理吸附。 改性后的柠檬渣吸附性能有较大改善, 孔径分布主要是中孔; 有三个失重过程, 在66 ℃左右有一个吸热峰, 在316和494 ℃左右有两个放热峰。 吸附前后并柠檬渣的基本框架没改变; 样品属于无定型结构。 改性柠檬渣表面疏松、 多孔, 能有效吸附Hg2+。
Abstract
With low price and its superior adsorption performance after modification, currently agricultural waste is used as adsorbent of heavy metals in wastewater, which has become a hot research topic. To study on Hg2+ from wastewater absorbed by lemon residues that has been modified by 15% concentration of sulphuric acid. The pore volume, pore size and other properties of the adsorbent were test. The samples were characterized by differential thermal analysis, IR, electron microscopy and spectroscopy. The result showed that the adsorption rate was controlled by membrane diffusion kinetics that was viewed as the first order kinetics equation of the Lagergren, which was physically absorbed. The adsorption properties of modified lemon residues were improved greatly, and the pore size distribution mainly was medium. There were three losses-weight process. There was a endothermic peak around 66 ℃ and two exotherm near 316 ℃ and 494 ℃. Basic framework of Lemon residues was not changed and structure of Lemon residues was amorphous; the surface of modified lemon residues loosen and many pores formed, and Hg2+ have been adsorbed effectively.
参考文献

[1] Liu C, Huang Y, Naismith N, et al. Environmental Science & Technology, 2003, 37(18): 4261.

[2] GUO Xue-yi, LIANG Sha, XIAO Cai-mei, et al(郭学益, 梁 莎, 肖彩梅, 等). The Chinese Journal of Nonferrous Metals(中国有色金属学报), 2011, 21(9): 2270.

[3] Zhan taoyang, Dudley K Strickland, Paul Bornstein. The Journalof Biological Chemistry, 2001, 276(11): 8403.

[4] Hutchison A R, Atwood D A. Journal of Chemical Crystallography, 2003, 33(8): 631.

[5] Palma G, Freer J, Baeza J. Water Research, 2003, 37(20): 4974.

[6] Roundhill D M, Solangi I B, Memon S, et al. Partical Journal of Analytical Environmental Chemistry, 2009, 10(1/2): 1.

[7] Esbrí J M, Bernaus A, Avila M, et al. Journal of Synchrotron Radiation, 2010, 17(2): 179.

[8] LI Cen, ZHAN Dui, LENGBEN Cai-rang, et al(李 岑, 占 堆, 楞本才让, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2015, 35(4): 1072.

[9] Acouea R A, Limaa E C, Diass L P, et al. Separation and Purification Technology, 2007, 57(1): 193.

[10] Prasad R, Ghimire K N, Inoue K. Hydrometallurgy, 2005, 79(3/4): 182.

[11] Ghimire K N, Inoue K, Yaimaguchi H, et al. Water Research, 2003, 37(20): 4945.

[12] LIANG Sha, GUO Xue-yi, FENG Ning-chuan, et al. Journal of Hazardous Materials, 2009, 170(1): 425.

[13] Brownp P, Jefcoat I A, Parrish D, et al. Advanced Environmental Resources, 2000, 4(1): 19.

[14] Iqbal M, Saeed A, Iqbal Z S. Journal of Hazardous Materials, 2009, 164(1): 161.

[15] Farinella N V, Matos G D, Arruda M A Z. Bioresource Technology, 2007, 98(10): 1940.

[16] Annadurai A, Juang R S, Lee D J. Water Sci. Technol., 2002, 47(1): 185.

[17] Adam J Janńczuk, David Agyemang, Neil C Da Costa, et al. Biochimica et Biophysica Acta, 2013, (1834): 1484.

[18] Tembhurkar A R, Radhika Deshpande. Journal of Hazardous, Toxic, and Radio Active Waste, 2012, 16: 311.

[19] Catia Giovanna Lopresto, Francesca Petrillo, Alessandro Alberto Casazza, et al. Separation and Purification Technology, 2014, 137(1): 13.

[20] María Boluda-Aguilar, Antonio López-Gómez. Industrial Crops and Products , 2013, 41(1): 188.

[21] SHEN Wang-qing, WEI Xi-jun, TANG Xue, et al(沈王庆, 魏锡均, 唐 雪, 等). Science and Technology of Food Industry(食品工业科技), 2015, 36(15): 224.

[22] Noeline B F, Manohar D M, Anirudhan T S, et al. Sep. Purif. Technol., 2005, 45(1): 131.

[23] Zhan Honglei, Wu Shixiang, Bao Rima, et al. The Royal Society of Chemistry, 2015, 5: 14389.

[24] Vania Marilyn Marin-Rangel, Raul Cortes-Martinez, Ruth Alfaro Cuevas Villanueva, et al. Journal of Food Science, 2012, 71(1): 10.

[25] RAN Jing, HUANG Xiu-li, WANG Yang-ping, et al(冉 敬, 黄秀丽, 汪阳平, 等). Hubei Agricultural Sciences(湖北农业科学), 2015, 54(17): 4177.

[26] SUN Xu-bing, ZHOU Wen-jun, ZHAI Hao-ying(孙绪兵, 周文俊, 翟好英). New Chemical Materials(化工新型材料), 2015, 43(3): 176.

[27] Lipponer M A, Dürr A. Chemical Physics Letters, 2015, (624): 69.

[28] Xu Xiaojian, Deng Zichen. Multidiscipline Modeling in Materialsand Structures, 2013, 9(1): 116.

[29] Susanna Monti, Vincenzo Carravetta, Li Cui, et al. The Journal of Physical Chemistry C, 2014, 118, 3610.

[30] Mingxin Liu, Dong Zhen, Lai Yanhua. Heat Transfer Research, 2015, 46(4): 369.

[31] Pradip B Shelke, Limaye A V. Surface Science 2015, (1-4): 637.

[32] Layla A Al Juhaiman, Amal Abu Mustafa, Wafaa K Mekhamer. Anti-Corrosion Methods and Materials, 2013, 60(1): 28.

[33] Piotr Zarzycki, Sebastien Kerisit, Kevin M. The Journal of Physical Chemistry C, 2015, 119, 3111.

沈王庆, 王淼, 杨婷. 柠檬渣吸附污水中Hg2+的动力学研究[J]. 光谱学与光谱分析, 2016, 36(3): 788. SHEN Wang-qing, WANG Miao, YANG Ting. Study on Kinetic of Hg2+ from Wastewater Absorbed by Lemon Residues[J]. Spectroscopy and Spectral Analysis, 2016, 36(3): 788.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!