大气与环境光学学报, 2015, 10 (2): 117, 网络出版: 2015-04-14   

空气质量卫星遥感监测技术进展

Review of Satellite Remote Sensing of Air Quality
作者单位
中国科学院遥感与数字地球研究所遥感科学国家重点实验室, 北京 100101
引用该论文

陈良富, 陶金花, 王子峰, 李莘莘, 张莹, 范萌, 李小英, 余超, 邹铭敏, 苏林, 陶明辉. 空气质量卫星遥感监测技术进展[J]. 大气与环境光学学报, 2015, 10(2): 117.

CHEN Liangfu, TAO Jinhua, WANG Zifeng, LI Shenshen, ZHANG Ying, FAN Meng, LI Xiaoying, YU Chao, ZOU Mingmin, SU Lin, TAO Minghui. Review of Satellite Remote Sensing of Air Quality[J]. Journal of Atmospheric and Environmental Optics, 2015, 10(2): 117.

参考文献

[1] World Health Organization. Review of evidence on health aspects of air pollution-REVIHAAP[R]. 2014.

[2] Lyons W A, Husar R B. SMS/GOES visible images detect a synoptic-scale air pollution episode[J]. Mon. Weather Rev., 1976, 104: 1623.

[3] Fraser R S, Kaufman Y J, Mahoney R L. Satellite measurements of aerosol mass and transport[J]. Atmos. Environ., 1984, 18: 2577-2584.

[4] Fishman J, Vukovich F M, Cahoon D, et al. The characterization of an air pollution episode using satellite total ozone measurements[J]. J. Appl. Meteor., 1987, 26: 1638-1654.

[5] Kaufman Y J, Tanré D, Remer L A, et al. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer[J]. J. Geophys. Res., 1997, 102 (D14): 17051-17067.

[6] Higurashi A, Nakajima T. Development of a two channel aerosol retrieval algorithm on global scale using NOAA/AVHRR[J]. J. Atmos. Sci., 1999, 56(7): 924-941.

[7] Diner D J, Martonchik J V, Kahn R, et al. Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land[J]. Remote Sen. Environ., 2005, 94: 155-171.

[8] 孙 林. 城市地区大气气溶胶遥感反演研究[D]. 北京: 中国科学院遥感应用研究所博士论文, 2006.

    Sun Lin. Remote Sensing of Aerosols over Urban Areas[D]. Beijing: Doctorial Dissertation of Institute of Remote Sensing Applications, Chinese Academy of Sciences, 2006(in Chinese).

[9] Deuzé J L, Bréon F M, Devaux C, et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements[J]. J. Geophys. Res., 2001, 106(5): 4913-4926.

[10] Remer L, Kaufman Y, Tanre D, et al. The modis aerosol algorithm, products, and validation[J]. J. Atmos. Sci., 2005, 62(4): 947-973.

[11] Levy R C, Remer L A, Mattoo S, et al. The second-generation operational algorithm: Retrieval of aerosol prosperities over land from inversion of MODIS spectral reflectance[J]. J. Geophys. Res., 2007, 112(D13): D13211.

[12] Li S, Chen L F, Tao J H, et al. Retrieval of aerosol optical depth over bright targets in the urban areas of North China during winter[J]. Sci. China-Earth Sci., 2012, 55: 1545-1553.

[13] Li S, Garay M J, Chen L, et al. Comparison of GEOS-Chem aerosol optical depth with AERONET and MISR data over the contiguous United States[J]. J. Geophys. Res., 2013, 118: 11228-11241.

[14] Wang Z, Chen L, Li Q, et al. Retrieval of aerosol size distribution from multi-angle polarized measurements assisted by intensity measurements over East China[J]. Remote Sens. Environ., 2012, 124: 679-688.

[15] Shang H, Chen L, Tao J, et al. Synergetic use of MODIS cloud parameters for distinguishing high aerosol loadings from clouds over the North China Plain[J]. IEEE J. Sel. Top. App. Earth Observ. Remote Sens., 2014: 99.

[16] Li S, Chen L, Xiong X, et al. Retrieval of the Haze Optical Thickness in North China Plain Using MODIS Data[J]. IEEE Trans. Geosci. Remote Sens., 2013, 51: 2528-2540.

[17] 王中挺, 厉 青, 李莘莘, 等. 基于环境一号卫星的霾监测应用[J]. 光谱学与光谱分析, 2012, 32(3): 775-780.

    Wang Zhongting, Li Qing, Li Shenshen, et al. The monitoring of haze from HJ-1[J]. Spectroscopy and Spectral Analysis, 2012, 32(3): 775-780(in Chinese).

[18] Tao M, Chen L, Su L, et al. Satellite observation of regional haze pollution over the North China Plain[J]. J. Geophys. Res., 2012, 117(D12): D12203.

[19] Martin R V. Satellite remote sensing of surface air quality[J]. Atmos. Environ., 2008, 42: 7823-7843.

[20] Hoff R M, Christopher S A. Remote sensing of particulate pollution from space: Have we reached the promised land[J]. J. Air Waste Manag. Assoc., 2009, 59: 645-675.

[21] Liu Y, Sarnat J A, Kilaru V, et al. Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing[J]. Environ. Sci. Technol., 2005, 39: 3269-3278.

[22] Liu Y, Park R J, Jacob D J, et al. Mapping annual mean ground-level PM2.5concentrations using Multi-angle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States[J]. J. Geophys. Res.-Atmos., 2004, 109(D22): D22206.

[23] Tao J H, Zhang M G, Chen L F, et al. Method to estimate concentration of surface-level particulate matter from satellite-based aerosol optical thickness[J]. Sci. China: Earth Sci., 2013, 56: 1422-1433.

[24] Hutchison K D, Faruqui S J, Smith S. Improving correlations between MODIS aerosol optical thickness and ground-based PM2.5 observations through 3D spatial analyses[J]. Atmos. Environ., 2008, 42: 530-543.

[25] Wang Z, Chen L, Tao J, Zhang Y, Su L, Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method[J]. Remote Sens. Environ., 2010, 114: 50-63.

[26] Bovensmann H, Burrows J P, Buchwitz M, et al. SCIAMACHY: Mission objectives and measurement modes[J]. J. Atmos. Sci., 1999, 56: 127-150.

[27] Levelt P F, Van den Oord G H J, Dobber M R, et al. The Ozone Monitoring Instrument[J]. IEEE Trans. Geosci. Remote Sens., 2006, 44: 1093-1101.

[28] Veefkind J P, de Haan J R, Brinksma E J, et al. Total ozone from the Ozone Monitoring Instrument (OMI) using the DOAS technique[J]. IEEE Trans. Geosci. Remote Sens., 2006, 44: 1239-1244.

[29] Han D, Chen L F, Su L, et al. A convolution algorithm to calculate differential cross sections of the Ring effect in the Earth’s atmosphere based on rotational Raman scattering[J]. Sci. China: Earth Sci., 2011, 54: 1407-1412.

[30] Krotkov N A, Carn S A, Krueger A J, et al. Band residual difference algorithm for retrieval of SO2 from the aura Ozone Monitoring Instrument (OMI)[J]. IEEE Trans. Geosci. Remote Sens., 2006, 44: 1259-1266.

[31] Yang K, Krotkov N A, Krueger A J, et al. Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument: Comparison and limitations[J]. J. Geophys. Res., 2007, 112: 24-43.

[32] Yang K, Krotkov N A, Krueger A J, et al. Improving retrieval of volcanic sulfur dioxide from backscattered UV satellite observations[J]. Geophys. Res. Lett., 2009, 36: L03102.

[33] Yan H, Chen L, Tao J, et al. Corrections for OMI SO2 BRD retrievals influenced by row anomalies[J]. Atmos. Meas. Tech., 2012, 5: 2635-2646.

[34] Yang K, Dickerson R R, Carn S A, et al. First observations of SO2 from the satellite Suomi NPP OMPS: Widespread air pollution events over China[J]. Geophys. Res. Lett., 2013, 40: 4957-4962.

[35] Yang K, Carn S A, Ge C, et al. Advancing measurements of tropospheric NO2 from space: New algorithm and first global results from OMPS[J]. Geophys. Res. Lett., 2014; 41: 4777-4786.

[36] Bennartz R, Preusker R. Representation of the photon pathlength distribution in a cloudy atmosphere using finite elements[J]. J. Quant. Spectr. Rad. Trans., 2006, 98: 202-219.

[37] Zou M, Chen L, Tao J, et al. Accuracy analysis of PPDF-based method to parameterize aerosol scattering effect[J]. Sci. China: Earth Sci., 2014, 57: 1807-1815.

[38] Chahine M T, Barnet C, Olsen E T, et al. On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2[J]. Geophys. Res. Lett., 2005, 32: L22803.

[39] Goldberg M D, Qu Y, McMillin L M, et al. AIRS near-real-time products and algorithms in support of operational numerical weather prediction[J]. IEEE Trans. Geosci. Remote Sens., 2003, 41: 379-389.

[40] Crevoisier C, Chédin A, Matsueda H, et al. First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations[J]. Atmos. Chem. Phys., 2009, 9(14): 4797-4810.

[41] Zhang Y, Xiong X, Tao J, et al. Methane retrieval from Atmospheric Infrared Sounder using EOF-based regression algorithm and its validation[J]. Chinese Sci. Bull., 2014, 59(14): 1508-1518.

[42] Xiong X, Barnet C, Maddy E, et al. Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS)[J]. J. Geophys. Res., 2008, 113(G00A01): 1-14.

[43] Buchwitz M. SCIAMACHY WFM-DOAS methane, carbon monoxide, and carbon dioxide dolumns: algorithm description and product specification[R]. IUP-SCIA-WFMD-ADPS-0003, Vers 2, Bremen, Germany, 2007.

陈良富, 陶金花, 王子峰, 李莘莘, 张莹, 范萌, 李小英, 余超, 邹铭敏, 苏林, 陶明辉. 空气质量卫星遥感监测技术进展[J]. 大气与环境光学学报, 2015, 10(2): 117. CHEN Liangfu, TAO Jinhua, WANG Zifeng, LI Shenshen, ZHANG Ying, FAN Meng, LI Xiaoying, YU Chao, ZOU Mingmin, SU Lin, TAO Minghui. Review of Satellite Remote Sensing of Air Quality[J]. Journal of Atmospheric and Environmental Optics, 2015, 10(2): 117.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!