大气与环境光学学报, 2015, 10 (2): 117, 网络出版: 2015-04-14   

空气质量卫星遥感监测技术进展

Review of Satellite Remote Sensing of Air Quality
作者单位
中国科学院遥感与数字地球研究所遥感科学国家重点实验室, 北京 100101
摘要
随着全球及区域尺度内空气污染问题的日益突显,利用卫星遥感进行大气探测的技术也得到了不断发展。 分别介绍了气溶胶、灰霾、近地面颗粒物、污染气体、温室气体的遥感反演原理,及近年来国内外算法和 应用进展情况。同时,阐述了建立多源卫星空气质量监测系统的迫切性,及其国内外发展现状。最后,针对目 前我国空气质量卫星监测技术的需求,指出了目前大气遥感技术在我国发展的不足之处,并为进一步提升卫星 遥感技术在大气监测领域的应用和扩展提出了一些建议。
Abstract
Air pollution problem on a global or regional scale has become increasingly prominent. Meanwhile, satellite remote sensing of air quality also evolved dramatically over the last decades. Application of remote sensing technology in aerosol, haze, near-surface particulate matter, pollutant gases and greenhouse gases are reviewed for current instruments, along with inversion algorithms and their process. The importance of developing a software system for monitoring air quality using multi-source satellite data is also discussed. For the requirement of satellite remote sensing of air quality over China, the existing inadequacies of the development of atmospheric remote sensing in China are pointed out, and some recommendations are given for further promoting and improving the application of remote sensing technology in atmospheric monitoring and air pollution epidemiologic studies.
参考文献

[1] World Health Organization. Review of evidence on health aspects of air pollution-REVIHAAP[R]. 2014.

[2] Lyons W A, Husar R B. SMS/GOES visible images detect a synoptic-scale air pollution episode[J]. Mon. Weather Rev., 1976, 104: 1623.

[3] Fraser R S, Kaufman Y J, Mahoney R L. Satellite measurements of aerosol mass and transport[J]. Atmos. Environ., 1984, 18: 2577-2584.

[4] Fishman J, Vukovich F M, Cahoon D, et al. The characterization of an air pollution episode using satellite total ozone measurements[J]. J. Appl. Meteor., 1987, 26: 1638-1654.

[5] Kaufman Y J, Tanré D, Remer L A, et al. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer[J]. J. Geophys. Res., 1997, 102 (D14): 17051-17067.

[6] Higurashi A, Nakajima T. Development of a two channel aerosol retrieval algorithm on global scale using NOAA/AVHRR[J]. J. Atmos. Sci., 1999, 56(7): 924-941.

[7] Diner D J, Martonchik J V, Kahn R, et al. Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land[J]. Remote Sen. Environ., 2005, 94: 155-171.

[8] 孙 林. 城市地区大气气溶胶遥感反演研究[D]. 北京: 中国科学院遥感应用研究所博士论文, 2006.

    Sun Lin. Remote Sensing of Aerosols over Urban Areas[D]. Beijing: Doctorial Dissertation of Institute of Remote Sensing Applications, Chinese Academy of Sciences, 2006(in Chinese).

[9] Deuzé J L, Bréon F M, Devaux C, et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements[J]. J. Geophys. Res., 2001, 106(5): 4913-4926.

[10] Remer L, Kaufman Y, Tanre D, et al. The modis aerosol algorithm, products, and validation[J]. J. Atmos. Sci., 2005, 62(4): 947-973.

[11] Levy R C, Remer L A, Mattoo S, et al. The second-generation operational algorithm: Retrieval of aerosol prosperities over land from inversion of MODIS spectral reflectance[J]. J. Geophys. Res., 2007, 112(D13): D13211.

[12] Li S, Chen L F, Tao J H, et al. Retrieval of aerosol optical depth over bright targets in the urban areas of North China during winter[J]. Sci. China-Earth Sci., 2012, 55: 1545-1553.

[13] Li S, Garay M J, Chen L, et al. Comparison of GEOS-Chem aerosol optical depth with AERONET and MISR data over the contiguous United States[J]. J. Geophys. Res., 2013, 118: 11228-11241.

[14] Wang Z, Chen L, Li Q, et al. Retrieval of aerosol size distribution from multi-angle polarized measurements assisted by intensity measurements over East China[J]. Remote Sens. Environ., 2012, 124: 679-688.

[15] Shang H, Chen L, Tao J, et al. Synergetic use of MODIS cloud parameters for distinguishing high aerosol loadings from clouds over the North China Plain[J]. IEEE J. Sel. Top. App. Earth Observ. Remote Sens., 2014: 99.

[16] Li S, Chen L, Xiong X, et al. Retrieval of the Haze Optical Thickness in North China Plain Using MODIS Data[J]. IEEE Trans. Geosci. Remote Sens., 2013, 51: 2528-2540.

[17] 王中挺, 厉 青, 李莘莘, 等. 基于环境一号卫星的霾监测应用[J]. 光谱学与光谱分析, 2012, 32(3): 775-780.

    Wang Zhongting, Li Qing, Li Shenshen, et al. The monitoring of haze from HJ-1[J]. Spectroscopy and Spectral Analysis, 2012, 32(3): 775-780(in Chinese).

[18] Tao M, Chen L, Su L, et al. Satellite observation of regional haze pollution over the North China Plain[J]. J. Geophys. Res., 2012, 117(D12): D12203.

[19] Martin R V. Satellite remote sensing of surface air quality[J]. Atmos. Environ., 2008, 42: 7823-7843.

[20] Hoff R M, Christopher S A. Remote sensing of particulate pollution from space: Have we reached the promised land[J]. J. Air Waste Manag. Assoc., 2009, 59: 645-675.

[21] Liu Y, Sarnat J A, Kilaru V, et al. Estimating ground-level PM2.5 in the eastern United States using satellite remote sensing[J]. Environ. Sci. Technol., 2005, 39: 3269-3278.

[22] Liu Y, Park R J, Jacob D J, et al. Mapping annual mean ground-level PM2.5concentrations using Multi-angle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States[J]. J. Geophys. Res.-Atmos., 2004, 109(D22): D22206.

[23] Tao J H, Zhang M G, Chen L F, et al. Method to estimate concentration of surface-level particulate matter from satellite-based aerosol optical thickness[J]. Sci. China: Earth Sci., 2013, 56: 1422-1433.

[24] Hutchison K D, Faruqui S J, Smith S. Improving correlations between MODIS aerosol optical thickness and ground-based PM2.5 observations through 3D spatial analyses[J]. Atmos. Environ., 2008, 42: 530-543.

[25] Wang Z, Chen L, Tao J, Zhang Y, Su L, Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method[J]. Remote Sens. Environ., 2010, 114: 50-63.

[26] Bovensmann H, Burrows J P, Buchwitz M, et al. SCIAMACHY: Mission objectives and measurement modes[J]. J. Atmos. Sci., 1999, 56: 127-150.

[27] Levelt P F, Van den Oord G H J, Dobber M R, et al. The Ozone Monitoring Instrument[J]. IEEE Trans. Geosci. Remote Sens., 2006, 44: 1093-1101.

[28] Veefkind J P, de Haan J R, Brinksma E J, et al. Total ozone from the Ozone Monitoring Instrument (OMI) using the DOAS technique[J]. IEEE Trans. Geosci. Remote Sens., 2006, 44: 1239-1244.

[29] Han D, Chen L F, Su L, et al. A convolution algorithm to calculate differential cross sections of the Ring effect in the Earth’s atmosphere based on rotational Raman scattering[J]. Sci. China: Earth Sci., 2011, 54: 1407-1412.

[30] Krotkov N A, Carn S A, Krueger A J, et al. Band residual difference algorithm for retrieval of SO2 from the aura Ozone Monitoring Instrument (OMI)[J]. IEEE Trans. Geosci. Remote Sens., 2006, 44: 1259-1266.

[31] Yang K, Krotkov N A, Krueger A J, et al. Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument: Comparison and limitations[J]. J. Geophys. Res., 2007, 112: 24-43.

[32] Yang K, Krotkov N A, Krueger A J, et al. Improving retrieval of volcanic sulfur dioxide from backscattered UV satellite observations[J]. Geophys. Res. Lett., 2009, 36: L03102.

[33] Yan H, Chen L, Tao J, et al. Corrections for OMI SO2 BRD retrievals influenced by row anomalies[J]. Atmos. Meas. Tech., 2012, 5: 2635-2646.

[34] Yang K, Dickerson R R, Carn S A, et al. First observations of SO2 from the satellite Suomi NPP OMPS: Widespread air pollution events over China[J]. Geophys. Res. Lett., 2013, 40: 4957-4962.

[35] Yang K, Carn S A, Ge C, et al. Advancing measurements of tropospheric NO2 from space: New algorithm and first global results from OMPS[J]. Geophys. Res. Lett., 2014; 41: 4777-4786.

[36] Bennartz R, Preusker R. Representation of the photon pathlength distribution in a cloudy atmosphere using finite elements[J]. J. Quant. Spectr. Rad. Trans., 2006, 98: 202-219.

[37] Zou M, Chen L, Tao J, et al. Accuracy analysis of PPDF-based method to parameterize aerosol scattering effect[J]. Sci. China: Earth Sci., 2014, 57: 1807-1815.

[38] Chahine M T, Barnet C, Olsen E T, et al. On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2[J]. Geophys. Res. Lett., 2005, 32: L22803.

[39] Goldberg M D, Qu Y, McMillin L M, et al. AIRS near-real-time products and algorithms in support of operational numerical weather prediction[J]. IEEE Trans. Geosci. Remote Sens., 2003, 41: 379-389.

[40] Crevoisier C, Chédin A, Matsueda H, et al. First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations[J]. Atmos. Chem. Phys., 2009, 9(14): 4797-4810.

[41] Zhang Y, Xiong X, Tao J, et al. Methane retrieval from Atmospheric Infrared Sounder using EOF-based regression algorithm and its validation[J]. Chinese Sci. Bull., 2014, 59(14): 1508-1518.

[42] Xiong X, Barnet C, Maddy E, et al. Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS)[J]. J. Geophys. Res., 2008, 113(G00A01): 1-14.

[43] Buchwitz M. SCIAMACHY WFM-DOAS methane, carbon monoxide, and carbon dioxide dolumns: algorithm description and product specification[R]. IUP-SCIA-WFMD-ADPS-0003, Vers 2, Bremen, Germany, 2007.

陈良富, 陶金花, 王子峰, 李莘莘, 张莹, 范萌, 李小英, 余超, 邹铭敏, 苏林, 陶明辉. 空气质量卫星遥感监测技术进展[J]. 大气与环境光学学报, 2015, 10(2): 117. CHEN Liangfu, TAO Jinhua, WANG Zifeng, LI Shenshen, ZHANG Ying, FAN Meng, LI Xiaoying, YU Chao, ZOU Mingmin, SU Lin, TAO Minghui. Review of Satellite Remote Sensing of Air Quality[J]. Journal of Atmospheric and Environmental Optics, 2015, 10(2): 117.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!