红外与激光工程, 2016, 45 (12): 1223001, 网络出版: 2017-01-12  

基于偏振光谱的叶片尺度下玉米与杂草识别研究

Identification of corn and weeds on the leaf scale using polarization spectroscopy
作者单位
1 南京信息工程大学 地理与遥感学院, 江苏 南京 210044
2 安徽省农业生态大数据工程实验室 安徽大学 , 安徽 合肥 230601
3 北京农业信息技术研究中心, 北京 100097
4 中国科学院遥感与数字地球研究所, 北京 100101
5 福建农业职业技术学院, 福建 福清 350007
摘要
自然界中不同种物质拥有不同的偏振特性, 这些特征信号能用于检测不同的目标地物。为了探索偏振光谱技术用于精确识别作物和杂草的可行性, 此研究利用配置偏振片的成像光谱仪FISS-P在室内采集玉米与5种杂草的偏振光谱影像。通过比较和分析0°、60°、120°和无偏4种状态下玉米与各种杂草的光谱响应规律、光谱特征和决策识别模型精度, 结果显示4种偏振状态下玉米和杂草的光谱变化趋势较一致, 无偏状态下玉米和杂草的光谱强度最大; 不同偏振状态下玉米和杂草的敏感波段既存在共性又表现出一定的差异性; 4种偏振状态下玉米杂草识别模型的总体精度和Kappa系数均达到90%以上, 其中, 0°偏振状态下玉米和杂草识别模型的整体精度最高, 接近100%。综上, 偏振光谱能够在叶片尺度较好地识别玉米和杂草, 这为田间尺度进一步应用提供了扎实的数据积累。
Abstract
In order to explore the feasibility of accurate identification between crop and weed species using polarization spectroscopy, Field Imaging Spectral System (FISS) was utilized with a polaroid configuration to collect imagery data of corn and five kinds of weeds in the laboratory. Through comparisons and analysis of spectral response curves, characteristic difference and identification model accuracy between corn and weeds under four polarization angles, it was found that there was a consistency for spectral changing trends between corn and five kinds of weeds, and the spectral intensity of corn and weeds displayed highest in the no polarization status. Moreover, the selected sensitive bands under four polarization conditions to distinguish corn and weed species indicated that there were similar characteristics, as well as some differences. Finally, for overall accuracy of the identification models between corn and weeds, and the corresponding Kappa coefficients were all more than 90%. The accuracy was the highest, close to 100%, when data were measured at 0° polarization angle. Therefore, polarization technology can be used to identify corn and weeds on the leaf scale, providing an important data foundation for further application on a field scale.
参考文献

[1] Taghadomi-Saberi S, Hemmat A. Improving field management by machine vision - A review[J]. Agricultural Engineering International : The CIGR e-journal, 2015, 17(3):92-111.

[2] Cope J S, Corney D, Clark J Y, et al. Plant species identification using digital morphometrics: A review[J]. Expert Systems with Applications, 2012, 39: 7562-7573.

[3] Zwiggelaar R. A review of spectral properties of plants and their potential use for crop/weed discrimination in row-crops[J]. Crop Protection, 1998, 17(3): 189-206.

[4] Piron A, Leemans V, Kleynen O. Selection of the most efficient wavelength bands for discriminating weeds from crop[J]. Computers & Electronics in Agriculture, 2008, 62(2): 141-148.

[5] Moshou D, Kateris D, Pantazi X E, et al. Crop and Weed Species Recognition based on Hyperspectral Sensing and Active Learning[M]. Netherland: Wageningen Academic Publishers, 2013.

[6] Herrmann I, Shapira U, Kinast S, et al. Ground-level hyperspectral imagery for detecting weeds in wheat fields[J]. Precision Agriculture, 2013, 14(6): 637-659.

[7] Vaiphasa C, Skidmore A K, Boer W F, et al. A hyperspectral band selector for plant species discrimination[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2007, 62: 225-235.

[8] Grant L, Daughtry C S T, Vanderbilt V C. Polarized and non-polarized leaf reflectances of Coleus blumei[J]. Environmental & Experimental Botany, 1987, 27(2): 139-145.

[9] Breon F M, Tanre D, Lecomte P, et al. Polarized reflectance of bare soils and vegetation: measurements and models[J]. IEEE Transactions on Geoscience & Remote Sensing, 1995, 33(2): 487-499.

[10] Grant L, Daughtry C S T, Vanderbilt V C. Polarized and specular reflectance variation with leaf surface features[J]. Physiologia Plantarum, 1993, 88(1): 1-9.

[11] Maignan F, Bréon F M, Fédèle E, et al. Polarized reflectances of natural surfaces: Spaceborne measurements and analytical modeling[J]. Remote Sensing of Environment, 2009, 113(12): 2642-2650.

[12] Raven P N, Jordan D L, Smith C E. Polarized directional reflectance from laurel and mullein leaves[J]. Optical Engineering, 2002, 41(5): 1002-1012.

[13] Vanderbilt V C, Grant L, Daughtry C S T. Polarization of light scattered by vegetation[J]. Proceedings of the IEEE, 1985, 73(6): 1012-1024.

[14] Sid`Ko A F, Botvich I Y, Pisman T I, et al. A study of spectral-polarization characteristics of plant canopies using land-based remote sensing[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2013, 129(11): 109-117.

[15] 赵云升, 黄方, 金伦, 等. 植物单叶偏振反射特征研究[J]. 遥感学报, 2000, 4(2): 131-135.

    Zhao Yunsheng, Huang Fang, Jin Lun, et al. Study on polarizing reflectance characteristics of plant simple leaf[J]. Journal of Remote Sensing, 2000, 4(2): 131-135. (in Chinese)

[16] 宋开山, 张柏, 赵云升. 东北主要高大落叶乔木单叶的偏振特性研究[J]. 东北师大学报, 2004, 36(1): 88-94.

    Song Kaishan, Zhang Bai, Zhao Yunsheng. Study on polarized characteristics of deciduous tree leaves in northeast of China[J]. Journal of Northeast Normal University, 2004, 36(1): 88-94. (in Chinese)

[17] 朱文静, 毛罕平, 刘红玉, 等. 温室番茄缺素叶片偏振反射特征分析[J]. 光谱学与光谱分析, 2014, 34(1): 145-150.

    Zhu Wenjing, Mao Hanping, Liu Hongyu, et al. Study on the polarized reflectance characteristics of single greenhouse tomato nutrient deficiency leaves[J]. Spectroscopy and Spectral Analysis, 2014, 34(1): 145-150. (in Chinese)

[18] Zhang L, Huang C, Wu T, et al. Laboratory calibration of a field imaging spectrometer system[J]. Sensors, 2011, 11(3):2408-2425.

[19] Wu T, Zhang L, Cen Y, et al. Polarized spectral measurement and analysis of sedum spectabile boreau using a field imaging spectrometer system[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2013, 6(2): 724-730.

[20] 李颖, 张立福, 严薇, 等. 地面成像光谱数据的田间杂草识别[J]. 遥感学报, 2013, 17(4): 855-871.

    Li Ying, Zhang Lifu, Yan Wei, et al. Weed identification using imaging spectrometer data[J]. Journal of Remote Sensing, 2013, 17(4): 855-871. (in Chinese)

[21] Jia X, Richards J. Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 1999, 37(1): 538-542.

[22] Kheir R B, Greve M H, Abdallah C, et al. Spatial soil zinc content distribution from terrain parameters: a GIS-based decision-tree model in Lebanon[J]. Environmental Pollution, 2010, 158(2): 520-528.

[23] Vega F A, Matías J M, Andrade M L, et al. Classification and regression trees (CARTs) for modelling the sorption and retention of heavy metals by soil[J]. Journal of Hazardous Materials, 2009, 167(1-3): 615-624.

[24] 孟夏, 谢东辉, 汪艳, 等. 叶片多角度偏振光谱特性影响因素的实验研究[J]. 光谱学与光谱分析, 2014, 34(3): 619-624.

    Meng Xia, Xie Donghui, Wang Yan, et al. Study on multi-angular polarized spectrum characteristics of leaf based on some indoor experimental data[J]. Spectroscopy & Spectral Analysis, 2014, 34(3): 619-624. (in Chinese)

林芬芳, 张东彦, 王秀, 吴太夏, 陈新福. 基于偏振光谱的叶片尺度下玉米与杂草识别研究[J]. 红外与激光工程, 2016, 45(12): 1223001. Lin Fenfang, Zhang Dongyan, Wang Xiu, Wu Taixia, Chen Xinfu. Identification of corn and weeds on the leaf scale using polarization spectroscopy[J]. Infrared and Laser Engineering, 2016, 45(12): 1223001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!