量子电子学报, 2017, 34 (2): 162, 网络出版: 2017-03-29   

空间非均匀场下H+2分子发射谐波及阿秒脉冲的理论研究

Theoretical investigation on harmonic emission and attosecond pulse generation from H+2 molecule under spatial inhomogeneous field
刘航 1,*冯立强 1,2,3
作者单位
1 辽宁工业大学化学与环境工程学院, 辽宁 锦州 121001
2 中国科学院大连化学物理研究所分子反应动力学国家重点实验室, 辽宁 大连 116023
3 辽宁工业大学理学院, 辽宁 锦州 121001
摘要
理论研究了空间非均匀场下H+2分子发射高次谐波及阿秒脉冲的特点。计算结果表明:适当 调节H+2分子的核间距离及空间非均匀参数,谐波发射的截止能量明显增强,谐波谱的干涉结构也 明显减小。引入单极控制激光场,谐波截止能量得到进一步扩展,形成一个由单一量子路径贡献而成的530 eV带宽的超长平台区。 通过叠加谐波可获得一系列脉宽范围在32~46 as的阿秒X射线脉冲。
Abstract
High-order harmonic emission and attosecond pulse generation from H+2 molecule driven by the spatial inhomogeneous laser field are theoretically investigated. Calculation results show that by properly adjusting the internuclear distance of H+2 molecule and spatial inhomogeneous parameters, the cutoff energy of harmonic emission is remarkably enhanced, and the interference structure of harmonic spectrum is also reduced. By introducing unipolar control laser field, the harmonic cutoff energy is further extended, and a 530 eV bandwidth long platform area contributed by a single quantum path is formed. By superposition of harmonics, a series of attosecond X-ray pulses with the pulse width ranging from 32 as to 46 as can be obtained.
参考文献

[1] McPherson A, Gibson G, Jara H, et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases[J]. J. Opt. Soc. Am. B, 1987, 4(4): 595-601.

[2] L’Huillier A, Balcou P. High-order harmonic generation in rare gases with a 1 ps 1053 nm laser[J]. Phys. Rev. Lett., 1993, 70(6): 774-777.

[3] Yang Yiting, Qiao Haoxue. Single short pulse generated by hydrogen atom exposed to the combined field of two laser pulses with similar frequency[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2013, 30(4): 405-410 (in Chinese).

[4] Li Lin, Luo Huajiang. Broad bandwidth attosecond pulse generation using mid-infrared two color field to control quantum trajectory[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2012, 29(5): 530-535 (in Chinese).

[5] Yuan K J, Bandrauk A D. Single circularly polarized attosecond pulse generation by intense few cycle elliptically polarized laser pulses and terahertz fields from molecular media[J]. Phys. Rev. Lett., 2013, 110(2): 023003.

[6] Wang Y H, Yu C, Shi Q, et al. Reexamination of wavelength scaling of harmonic yield in intense midinfrared fields[J]. Phys. Rev. A, 2014, 89(2): 023825.

[7] Lu R F, Yu C, Wang Y H, et al. Control of electron localization to isolate and enhance molecular harmonic plateau in asymmetric HeH+2 system[J]. Phys. Lett. A, 2014, 378(1-2): 90-94.

[8] Goulielmakis E, Schultze M, Hofstetter M, et al. Single-cycle nonlinear optics[J]. Science, 2008, 320(5883): 1614-1617.

[9] Corkum P B. Plasma perspective on strong field multiphoton ionization[J]. Phys. Rev. Lett., 1993, 71(13): 1994-1997.

[10] Chang Z H. Chirp of the single attosecond pulse generated by a polarization gating[J]. Phys. Rev. A, 2005, 71(2): 023813.

[11] Feng L Q, Liu H, Liu X J. Polarized gating assisted generation of the ultrashort extreme-ultraviolet sources[J]. J. Math. Chem., 2014, 52(8): 2074-2086.

[12] Lu R F, He H X, Guo Y H, et al. Theoretical study of single attosecond pulse generation with a three-colour laser field[J]. J. Phys. B: At. Mol. Opt. Phys., 2009, 42(22): 225601.

[13] Zeng Z, Cheng Y, et al. Generation of an extreme ultraviolet supercontinuum in a two-color laser field[J]. Phys. Rev. Lett., 2007, 98(20): 203901.

[14] Feng L Q, Chu T S. High-order harmonics extension and isolated attosecond pulse generation in three-color field: Controlling factors[J]. Phys. Lett. A, 2011, 375(41): 3641-3648.

[15] Feng L Q, Chu T S. Quantum path control on the harmonic emission in the presence of a terahertz field[J]. Chem. Phys., 2012, 405: 26-31.

[16] Feng L Q, Chu T S. Generation of an isolated sub-40-as pulse using two-color laser pulses: Combined chirp effects[J]. Phys. Rev. A, 2011, 84(5): 053853.

[17] Li P C, Zhou X X, Wang G L, et al. Isolated sub-30-as pulse generation of an He+ ion by an intense few-cycle chirped laser and its high-order harmonic pulses[J]. Phys. Rev. A, 2009, 80(5): 053825.

[18] Popmintchev T, Chen M C, Cohen O, et al. Extended phase matching of high harmonics driven by mid-infrared light[J]. Opt. Lett., 2008, 33(18): 2128-2130.

[19] Li P C, Laughlin C, Chu S I. Generation of isolated sub-20-attosecond pulses from He atoms by two-color midinfrared laser fields[J]. Phys. Rev. A, 2014, 89(2): 023431.

[20] Kim S, Jin J, Kim Y J, et al. High-harmonic generation by resonant plasmon field enhancement[J]. Nature, 2008, 453(7196): 757-760.

[21] Shaaran T, Ciappina M F, Lewenstein M. Quantum-orbit analysis of above-threshold ionization driven by an intense spatially inhomogeneous field[J]. Phys. Rev. A, 2013, 87(5): 053415.

[22] Shaaran T, Ciappina M F, Lewenstein M. Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement[J]. Phys. Rev. A, 2012, 8(2): 023408.

[23] Ciappina M F, Acimovic S S, Shaaran T, et al. Enhancement of high harmonic generation by confining electron motion in plasmonic nanostrutures[J]. Opt. Expr., 2012, 20(24): 26261-26274.

[24] Ciappina M F, Pérez-Hernández J A, Shaaran T, et al. Electron-momentum distributions and photoelectron spectra of atoms driven by an intense spatially inhomogeneous field[J]. Phys. Rev. A, 2013, 87(6): 063833.

[25] Cao X, Jiang S C, Yu C, et al. Generation of isolated sub-10-attosecond pulses in spatially inhomogenous two-color fields[J]. Opt. Expr., 2014, 22(21): 26153-26161.

[26] He L X, Wang Z, Li Y, et al. Wavelength dependence of high-order-harmonic yield in inhomogeneous fields[J]. Phys. Rev. A, 2013, 88(5): 053404.

[27] Luo J H, Li Y, et al. Efficient supercontinuum generation by UV-assisted midinfrared plasmonic fields[J]. Phys. Rev. A, 2014, 89(2): 023405.

[28] Wang Z, Lan P F, Luo J H, et al. Control of electron dynamics with a multicycle two-color spatially inhomogeneous field for efficient single-attosecond-pulse generation[J]. Phys. Rev. A, 2013, 88(6): 063838.

[29] Wang Z, He L X, et al. High-order harmonic generation from Rydberg atoms in inhomogeneous fields[J]. Opt. Expr., 2014, 22(21): 25909-25922.

[30] Feng L Q, Liu H. Generation of the ultrabroad bandwidth with keV by three-color low intense mid-infrared inhomogeneous pulse[J]. Optics and Laser Technology, 2016, 81: 7-13.

[31] Feng L Q, Liu H. Attosecond extreme ultraviolet generation in cluster by using spatially inhomogeneous field[J]. Phys. Plasmas, 2015, 22(1): 013107.

[32] Bian X B, Bandrauk A D. Multichannel molecular high-order harmonic generation from asymmetric diatomic molecules[J]. Phys. Rev. Lett., 2010, 105(9): 093903.

[33] Kamta G L, Bandrauk A D. Phase dependence of enhanced ionization in asymmetric molecules[J]. Phys. Rev. Lett., 2005, 94(20): 203003.

[34] Lu R F, Zhang P Y, Han K L. Attosecond-resolution quantum dynamics calculations for atoms and molecules in strong laser fields[J]. Phys. Rev. E, 2008, 77(6): 066701.

[35] Hu J, Han K L, He G Z. Correlation quantum dynamics between an electron and D+2 molecule with attosecond resolution[J]. Phys. Rev. Lett., 2005, 95(12): 123001.

[36] Miao X Y, Du H N. Theoretical study of high-order-harmonic generation from asymmetric diatomic molecules[J]. Phys. Rev. A, 2013, 87(5): 053404.

[37] Burnett K, Reed V C, et al. Calculation of the background emitted during high-harmonic generation[J]. Phys. Rev. A, 1992, 45(5): 3347-3349.

[38] Antoine P, Piraux B, Maquet A. Time profile of harmonics generated by a single atom in a strong electromagnetic field[J]. Phys. Rev. A, 1995, 51(3): R1750-R1753.

[39] Mairesse Y, Bohan A D, Frasinski L J, et al. Attosecond synchronization of high-harmonic soft x-rays[J]. Science, 2003, 302(5650): 1540-1543.

刘航, 冯立强. 空间非均匀场下H+2分子发射谐波及阿秒脉冲的理论研究[J]. 量子电子学报, 2017, 34(2): 162. LIU Hang, FENG Liqiang. Theoretical investigation on harmonic emission and attosecond pulse generation from H+2 molecule under spatial inhomogeneous field[J]. Chinese Journal of Quantum Electronics, 2017, 34(2): 162.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!