Journal of Innovative Optical Health Sciences, 2011, 4 (3): 261, Published Online: Jan. 10, 2019  

POWER OF DUAL-WAVELENGTH APPROACHES IN STUDYING PHYSIOLOGICAL AND FUNCTIONAL CHANGES OF INTACT HEART AND IN VIVO BRAIN

Author Affiliations
1 Department of Biomedical Engineering SUNY at Stony Brook, Stony Brook, NY 11794, USA
2 Medical Department, Brookhaven National Laboratory Upton, NY 11973-5000, USA
3 Department of Anesthesiology, SUNY at Stony Brook Life Science Building, Room 002 Stony Brook, NY 11794, USA
Abstract
Since the dual-wavelength spectrophotometer was developed, it has been widely used for studying biological samples and applied to extensive investigations of the electron transport in respiration and redox cofactors, redox state, metabolic control, and the generation of reactive oxygen species in mitochondria. Here, we discuss some extension of dual-wavelength approaches in our research to study the physiological and functional changes in intact hearts and in vivo brain. Specifically, we aimed at (1) making nonratiometric fluorescent indicator become ratiometric fluorescence function for investigation of Ca2+ dynamics in live tissue; (2) eliminating the effects of physiological changes on measurement of intracellular calcium; (3) permitting simultaneous imaging of multiple physiological parameters. The animal models of the perfused heart and transiently ischemic insult of brain are used to validate these approaches for physiological applications.
References

[1] B. Chance, "Rapid and sensitive spectrophotometry. III. A double beam apparatus," Rev. Sci. Instrum. 22, 634-638 (1951).

[2] B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young et al., "Comparison of timeresolved and -unresolved measurements of deoxyhemoglobin in brain," Proc. Natl. Acad. Sci. USA 85(14), 4971-4975 (1988).

[3] D. A. Boas, M. A. Franceschini, A. K. Dunn, G. Strangman, "Noninvasive imaging of cerebral activation with diffuse optical tomography," Chapter 8 in: In Vivo Optical Imaging of Brain Function, R. D. Frostig (ed.), CRC Press (2002).

[4] B. Chance, B. Schoener, R. Oshino, F. Itshak, Y. Nakase, "Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals," J. Biol. Chem. 254(11), 4764-4771 (1979).

[5] M Cope, The development of a near infrared spectroscopy system and its application for noninvasive monitoring of cerebral blood and tissue oxygenation in the new born infant, University College London (1991).

[6] F. F. Jobsis, "Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters," Science 198(4323), 1264-1267 (1977).

[7] J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, A. G. Yodh, "Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia," J. Cereb. Blood Flow Metab. 23(8), 911-924 (2003).

[8] E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, "Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation," Anal. Biochem. 195(2), 330-351 (1991).

[9] G. A. Millikan, "Experiments on muscle haemoglobin in vivo: The instantaneous measurement of muscle metabolism," Proc. R. Soc. Lond. B 123, 218-241 (1937).

[10] B. Chance, Q. Luo, S. Nioka, D. C. Alsop, J. A. Detre, "Optical investigations of physiology. A study of intrinsic and extrinsic biomedical contrast," Philos. Trans. R. Soc. Lond. B. Biol. Sci. 352(1354), 707-716 (1997).

[11] B. Chance, M. T. Dait, C. Zhang, T. Hamaoka, F. Hagerman, "Recovery from exercise-induced desaturation in the quadriceps muscles of elite competitive rowers," Am. J. Physiol. 262, C766-C775 (1992).

[12] B. Chance, C. Hirth, C. Hyman, Q. Luo, S. Nioka, "fNIRI functional imaging with near infrared," Brain 97: 18th International Symposium on Cerebral Blood Flow and Metabolism, Baltimore, 1997.

[13] S. P. Gopinath, C. S. Robertson, C. F. Contant, R. K. Narayan, R. G. Grossman, B. Chance, "Early detection of delayed traumatic intracranial hematomas using near infrared spectroscopy," J. Neurosurgery 83, 438-444 (1995).

[14] D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, B. Chance, "Non-invasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument," Phys. Med. Biol. 46(1), 41-62 (2001).

[15] B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, G. Alexandrakis, "Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy," J. Biomed. Opt. 15(3), 036008 (2010).

[16] S. Nioka, Q. Luo, B. Chance, "Human brain functional imaging with reflectance CWS," Adv. Exp. Med. Biol. 428, 237-242 (1997).

[17] B. Chance, S. Nioka, S. Sadi, C. Li, "Oxygenation and blood concentration changes in human subject prefrontal activation by anagram solutions," Adv. Exp. Med. Biol. 510, 397-401 (2003).

[18] C. Du, A. P. Koretsky, I. Izrailtyan, H. Benveniste, "Simultaneous detection of blood volume, oxygenation, and intracellular calcium changes during cerebral ischemia and reperfusion in vivo using diffuse reflectance and fluorescence," J. Cereb. Blood Flow Metab. 25(8), 1078-1092 (2005).

[19] E. D. London, K. R. Bonson, M. Ernst, S. Grant, "Brain imaging studies of cocaine abuse: Implications for medication development," Crit. Rev. Neurobiol. 13(3), 227-242 (1999).

[20] T. A. Fralix, F. W. Heineman, R. S. Balaban, "Effects of tissue absorbance on NAD(P)H and Indo-1 fluorescence from perfused rabbit hearts," FEBS. 262(2), 287-292 (1990).

[21] R. Brandes, V. M. Figueredo, S. A. Camacho, B. M. Massie, M. W. Weiner, "Suppression of motion artifacts in fluorescence spectroscopy of perfused hearts," Am. J. Physiol. 263, H972-H980 (1992).

[22] A. P. Koretsky, L. A. Katz, R. S. Balaban, "Determination of pyridine nucleotide fluorescence from the perfused heart using an internal standard," Am. J. Physiol. 253, H856-H862 (1987).

[23] C. Du, G. A. MacGowan, D. L. Farkas, A. P. Koretsky, "Calcium measurements in perfused mouse heart: Quantitating fluorescence and absorbance of Rhod-2 by application of photon migration theory," J. Biophys. 80(1), 549-561 (2001).

[24] A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, D. A. Boas, "Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation," Opt. Lett. 28(1), 28-30 (2003).

[25] H. F. Zhang, K. Maslov, L. H. Wang, "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy," Appl. Phys. Lett. 90(5), 053901 (2007).

[26] Z. Luo, Z. Yuan, Y. Pan, C. Du, "Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging," Opt. Lett. 34(9), 1480-1482 (2009).

[27] Z. Yuan, Z. Luo, N. D. Volkow, Y. Pan, C. Du, "Imaging separation of neuronal from vascular effects of cocaine on rat cortical brain in vivo," Neuroimage 54(2), 1130-1139 (2011).

ZHONGCHI LUO, CONGWU DU. POWER OF DUAL-WAVELENGTH APPROACHES IN STUDYING PHYSIOLOGICAL AND FUNCTIONAL CHANGES OF INTACT HEART AND IN VIVO BRAIN[J]. Journal of Innovative Optical Health Sciences, 2011, 4(3): 261.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!