激光与光电子学进展, 2017, 54 (8): 081406, 网络出版: 2017-08-02   

基于π相移光纤布拉格光栅的窄线宽掺铒光纤激光器 下载: 1076次

Narrow Linewidth Erbium-Doped Fiber Laser with a π Phase-Shifted Fiber Bragg Grating
孙俊杰 1,*王泽锋 1,2,3王蒙 1曹涧秋 1,2,3陈金宝 1,2,3
作者单位
1 国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
2 大功率光纤激光湖南省协同创新中心, 湖南 长沙 410073
3 高能激光技术湖南省重点实验室, 湖南 长沙 410073
摘要
窄线宽掺铒光纤激光器具有线宽窄、噪声低等优点, 在光纤通信、光纤传感、相干探测和合成等方面有广泛的应用。利用自行设计并制作的π相移光纤光栅和高反射率光纤布拉格光栅(FBG), 搭建了环形腔掺铒光纤激光器, 利用π相移光纤光栅的窄带滤波特性实现了1.5 μm波段的窄线宽掺铒光纤激光输出。当980 nm半导体激光抽运功率为5 W时, 激光输出功率为1.006 W, 光-光转换效率大于20%, 中心波长为1549.45 nm, 激光线宽为5.32 pm。输出光没有残余抽运光, 表明继续增加抽运光功率可以进一步提升激光功率。通过优化设计π相移光纤光栅的透射峰带宽、FBG的反射谱和激光腔结构, 有望实现高效、高功率的单纵模激光输出。
Abstract
Erbium-doped fiber lasers have wide applications in fiber communication, fiber sensors, coherent detection and combination because of its narrow linewidth and low noise. An erbium-doped fiber laser with ring cavity is constructed by a self-designed π phase-shifted fiber grating and a high-reflective fiber Bragg grating (FBG), which can achieve narrow linewidth erbium-doped fiber laser output in 1.5 μm-band by utilizing the π phase-shifted fiber grating as a narrowband filter. When the pump power of 980 nm diode laser is 5 W, the laser output power is 1.006 W, the optical to optical efficiency is more than 20%, and the central wavelength is 1549.45 nm with laser linewidth of 5.32 pm. The output light is without residual pump, which indicates that the laser power can be further increased by increasing pump power. High-efficiency, high power, single-longitudinal-mode laser can be achieved by optimizing the bandwidth of transmission peak of π phase-shifted fiber grating, the reflectance spectrum of FBG, and the structure of the laser cavity.
参考文献

[1] Koshikiya Y, Fan X, Ito F. Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser[J]. Journal of Lightwave Technology, 2008, 26(18): 3287-3294.

[2] 万洪丹, 鲁志明, 胡涛平. 基于注入式有源双环腔的高功率单频窄线宽光纤激光器[J]. 激光与光电子学进展, 2015, 52(7): 071401.

    Wan Hongdan, Lu Zhiming, Hu Taoping. A high power, single-frequency, narrow linewidth fiber laser based on an active double-ring cavity[J]. Laser & Optoelectronics Progress, 2015, 52(7): 071401.

[3] 徐 丹, 卢 斌, 杨 飞, 等. 基于3×3耦合器的窄线宽单频激光器噪声测量技术[J]. 中国激光, 2016, 43(1): 0102004.

    Xu Dan, Lu Bin, Yang Fei, et al. Narrow linewidth single-frequency laser noise measurement based on a 3×3 fiber coupler[J]. Chinese J Lasers, 2016, 43(1): 0102004.

[4] 张晓青, 贾豫东, 董建晶. 基于光纤环形腔结构的布里渊频移器设计[J]. 光学学报, 2016, 36(12): 1214007.

    Zhang Xiaoqing, Jia Yudong, Dong Jianjing. Design of Brillouin frequency shifter based on ring cavity structure of optical fiber[J]. Acta Optica Sinica, 2016, 36(12): 1214007.

[5] Liu F N, Jia X J, Liu Y G, et al. Enhancing coherent combining efficiency via choosing appropriate lasing wavelength in a Michelson compound cavity based on two 3 dB fibre loop mirrors and one fibre Bragg grating[J]. Chinese Physics Letters, 2007, 24(4): 929-932.

[6] Kringlebotn J T, Archambault J L, Reekie L, et al. Er3+∶Yb3+-codoped fiber distributed-feedback laser[J]. Optics Letters, 1994, 19(24): 2101-2103.

[7] Wu L, Pei L, Liu C, et al. Research on tunable phase shift induced by piezoelectric transducer in linearly chirped fiber Bragg grating with the V-I transmission matrix formalism[J]. Optics & Laser Technology, 2016, 79: 15-19.

[8] Malara P, Campanella C E, de Leonardis F, et al. Enhanced spectral response of π-phase shifted fiber Bragg gratings in closed-loop configuration[J]. Optics Letters, 2015, 40(9): 2124-2126.

[9] Guo J, Yang C. Highlystabilized phase-shifted fiber Bragg grating sensing system for ultrasonic detection[J]. IEEE Photonics Technology Letters, 2015, 27(8): 848-851.

[10] Guy M J, Taylor J R, Kashyap R. Single-frequency erbium fibre ring laser with intracavity phase-shifted fibre Bragg grating narrowband filter[J]. Electronics Letters, 1995, 31(22): 1924-1925.

[11] Chen X, Yao J, Zeng F, et al. Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating[J]. IEEE Photonics Technology Letters, 2005, 17(7): 1390-1392.

[12] Zhao Y, Chang J, Wang Q, et al. Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG[J]. Optics Express, 2013, 21(19): 22515-22522.

[13] Kogelnik H. Filter response of nonuniform almost-periodic structures[J]. Bell Labs Technical Journal, 1976, 55(1): 109-126.

[14] Yamada M, Sakuda K. Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach[J]. Applied Optics, 1987, 26(16): 3474-3478.

[15] Weller-Brophy L A, Hall D G. Analysis of waveguide gratings: Application of Rouard′s method[J]. Journal of the Optical Society of America A, 1985, 2(6): 863-871.

[16] 周少玲. 相移光纤光栅特性分析[J]. 光通信技术, 2003, 27(4): 47-49.

    Zhou Shaoling. Theoretical analysis on characteristics of phased-shifted fiber grating[J]. Optical Communication Technology, 2003, 27(4): 47-49.

[17] Wang M, Zhang Y J, Wang Z F. Fabrication of chirped and tilted fiber Bragg gratings and suppression of stimulated Raman scattering in fiber amplifiers[J]. Optics Express, 2017, 25(2): 1529-1534.

孙俊杰, 王泽锋, 王蒙, 曹涧秋, 陈金宝. 基于π相移光纤布拉格光栅的窄线宽掺铒光纤激光器[J]. 激光与光电子学进展, 2017, 54(8): 081406. Sun Junjie, Wang Zefeng, Wang Meng, Cao Jianqiu, Chen Jinbao. Narrow Linewidth Erbium-Doped Fiber Laser with a π Phase-Shifted Fiber Bragg Grating[J]. Laser & Optoelectronics Progress, 2017, 54(8): 081406.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!