Frontiers of Optoelectronics, 2017, 10 (3): 255, 网络出版: 2018-01-17  

In vivo skin imaging prototypes “made in Latvia”

In vivo skin imaging prototypes “made in Latvia”
作者单位
Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, Riga, LV-1586, Latvia
摘要
Abstract
This paper briefly reviews the operational principles and designs of portable in vivo skin imaging prototypes developed at the Biophotonics Laboratory of the Institute of Atomic Physics and Spectroscopy, University of Latvia. Four types of imaging devices are presented. Multi-spectral imagers ensure distant mapping of specific skin parameters (e.g., distribution of skin chromophores). Autofluorescence photobleaching rate imagers show potential for skin tumor assessment and margin delineation. Photoplethysmography video-imagers remotely detect cutaneous blood pulsations and provide real-time information on the human cardiovascular state. Multimodal skin imagers perform the above-mentioned functions by acquiring several spectral and video images using the same image sensor.
参考文献

[1] Spigulis J. Biophotonic technologies for noninvasive assessment of skin condition and blood microcirculation. Latvian Journal of Physics and Technical Sciences 2012, 49(5): 63-80

[2] http://www.imaging.org/site/PDFS/Reporter/Articles/REP27_4_ CIC20_TOMINAGA_p177.pdf (accessed on 12.03.2017)

[3] Jakovels D, Spigulis J, Rogule L. RGB mapping of hemoglobin distribution in skin. Proceedings of the Society for Photo- Instrumentation Engineers, 2011, 8087: 80872B

[4] Jakovels D, Kuzmina I, Berzina A, Valeine L, Spigulis J. Noncontact monitoring of vascular lesion phototherapy efficiency by RGB multispectral imaging. Journal of Biomedical Optics, 2013, 18(12): 126019

[5] Jakovels D, Spigulis J. 2-D mapping of skin chromophores in the spectral range 500 - 700 nm. Journal of Biophotonics, 2010, 3(3): 125-129

[6] Jakovels D, Spigulis J. RGB imaging device for mapping and monitoring of hemoglobin distribution in skin. Lithuanian Journal of Physics, 2012, 52(1): 50-54

[7] Philips Vital Signs Camera. http://www.vitalsignscamera.com/ (accessed on 12.03.2017)

[8] The best heart disease iPhone & Android Apps of the year. http:// www.healthline.com/health-slideshow/top-heart-disease-iphoneandroid- apps#5 (accessed on 12.03.2017)

[9] kinvision. https://www.skinvision.com/technology-skin-cancermelanoma- mobile-app (accessed on 12.03.2017)

[10] Spigulis J, Lacis M, Kuzmina I, Lihacovs A, Upmalis V, Rupenheits Z. Method and device for smartphone mapping of tissue compounds. WO 2017/012675 A1, 2017

[11] Kuzmina I, Lacis M, Spigulis J, Berzina A, Valeine L. Study of smartphone suitability for mapping of skin chromophores. Journal of Biomedical Optics, 2015, 20(9): 090503

[12] http://www.dino-lite.com/applications_list.php index_id = 8 (accessed on 12.03.2017)

[13] http://www.dino-lite.com/products_detail.php index_m1_id = 0&index_m2_id = 0&index_id = 61 (accessed on 12.03.2017)

[14] Diebele I, Kuzmina I, Lihachev A, Kapostinsh J, Derjabo A, Valeine L, Spigulis J. Clinical evaluation of melanomas and common nevi by spectral imaging. Biomedical Optics Express, 2012, 3(3): 467- 472

[15] Bekina A, Diebele I, Rubins U, Zaharans J, Derjabo A, Spigulis J. Multispectral assessment of skin malformations by modified videomicroscope. Latvian Journal of Physics and Technical Sciences, 2012, 49(5): 4-8

[16] Bekina A, Rubins U, Lihacova I, Zaharans J, Spigulis J. Skin chromophore mapping by means of a modified video-microscope for skin malformation diagnosis. Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8856: 88562G

[17] Rubins U, Zaharans J, Lihacova I, Spigulis J. Multispectral videomicroscope modified for skin diagnostics. Latvian Journal of Physics and Technical Sciences, 2014, 51(5): 65-70

[18] Spigulis J, Elste L. Method and device for imaging of spectral reflectance at several wavelength bands. WO2013135311 (A1), 2012

[19] Spigulis J, Jakovels D, Rubins U. Multi-spectral skin imaging by a consumer photo-camera. Proceedings of the Society for Photo- Instrumentation Engineers, 2010, 7557: 75570M

[20] Spigulis J, Oshina I. Snapshot RGB mapping of skin melanin and hemoglobin. Journal of Biomedical Optics, 2015, 20(5): 050503

[21] Spigulis J, Oshina I, Berzina A, Bykov A. Smartphone snapshot mapping of skin chromophores under triple-wavelength laser illumination. Journal of Biomedical Optics, 2017, 22(9): 091508

[22] Prahl S. Tabulated molar extinction coefficient for hemoglobin in water. http://omlc.ogi.edu/spectra/hemoglobin/summary.html (accessed 30 November 2016)

[23] Sarna T, Swartz H M. The physical properties of melanin. http:// omlc.ogi.edu/spectra/melanin/eumelanin.html (accessed 30 November 2016)

[24] Spigulis J, Elste L. Single-snapshot RGB multispectral imaging at fixed wavelengths: proof of concept. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 8937: 89370L

[25] Spigulis J, Oshina I. Method and device for chromophore mapping under illumination by several spectral lines. LV patent 15106 B, 2016

[26] Rubins U, Kviesis-Kipge E, Spigulis J. Device for obtaining speckle-free images at illumination by scattered laser beams. LV patent application P-17-17, 2017

[27] Oshina I, Spigulis J, Rubins U, Kviesis-Kipge E, Lauberts K. Express RGB mapping of three to five skin chromophores. OSA Technical Digests, 2017 (ECBO Proceedings, Munich, in press)

[28] Lihachev A, Lesins Jh D, Jakovels J, Spigulis. Low power cw-laser signatures on human skin. Quantum Electronics, 2011, 40(12): 1077-1080

[29] Stratonnikov A A, Polikarpov V S, Loschenov V B. Photobleaching of endogenous fluorochroms in tissues in vivo during laser irradiation. Proceedings of the Society for Photo-Instrumentation Engineers, 2001, 4241: 13-24

[30] Lesinsh J, Lihachev A, Rudys R, Bagdonas S, Spigulis J. Skin autofluorescence photobleaching and photo-memory. Proceedings of the Society for Photo-Instrumentation Engineers, 2011, 8092: 80920N

[31] Spigulis J, Lihachev A, Erts R. Imaging of laser-excited tissue autofluorescence bleaching rates. Applied Optics, 2009, 48(10): D163-D168

[32] Lihachev A, Derjabo A, Ferulova I, Lange M, Lihacova I, Spigulis J. Autofluorescence imaging of basal cell carcinoma by smartphone RGB camera. Journal of Biomedical Optics, 2015, 20(12): 120502

[33] Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement, 2007, 28 (3): R1-R39

[34] Spigulis J. Optical noninvasive monitoring of skin blood pulsations. Applied Optics, 2005, 44(10): 1850-1857

[35] Rubins U, Upmalis V, Rubenis O, Jakovels D, Spigulis J. Real-time photoplethysmography imaging system. Proceedings of IFMBE, 2011, 34: 183-186

[36] Rubins U, Spigulis J, Miscuks A. Photoplethysmography imaging algorithm for continuous monitoring of regional anesthesia. In: Proceedings of the 14th ACM/IEEE Symposium on Embedded Systems for Real-Time Multimedia, ESTIMedia'16. 2016: 67-71

[37] Rubins U, Spigulis J, Miscuks A. Application of color magnification technique for revealing skin microcircuration changes under regional anaesthetic input. Proceedings of the Society for Photo- Instrumentation Engineers, 2013, 9032: 903203

[38] Spigulis J, Gailite L, Lihachev A, Erts R. Simultaneous recording of skin blood pulsations at different vascular depths by multiwavelength photoplethysmography. Applied Optics, 2007, 46(10): 1754-1759

[39] Marcinkevics Z, Rubins U, Zaharans J, Miscuks A, Urtane E, Ozolina-Moll L. Imaging photoplethysmography for clinical assessment of cutaneous microcirculation at two different depths. Journal of Biomedical Optics, 2016, 21(3): 035005

[40] Spigulis J, Garancis V, Rubins U, Zaharans E, Zaharans J, Elste L. A device for multimodal imaging of skin. Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8574: 85740J

[41] Spigulis J, Rubins U, Kviesis-Kipge E, Rubenis O. SkImager: a concept device for in-vivo skin assessment by multimodal imaging. Proceedings of the Estonian Academy of Sciences, 2014, 63(3): 213-220

[42] Embedded linux on board computer decsription, https://www. raspberrypi.org/ (accessed on 12.03.2017)

[43] Industrial USB cameras description, https://en.ids-imaging.com/ (accessed on 12.03.2017)

[44] Bliznuks D, Jakovels D, Saknite I, Spigulis J. Mobile platform for online processing of multimodal skin optical images: using online Matlab server for processing remission, fluorescence and laser speckle images, obtained by using novel handheld device. In: Proceedings of BioPhotonics 2015 (Florence). 2015: 7304024

[45] Jakovels D, Saknite I, Bliznuks D, Spigulis J, Kadikis R. Benignatypical nevi discrimination using diffuse reflectance and fluorescence multispectral imaging system. In: Proceedings of BioPhotonics 2015 (Florence). 2015: 7304026

Janis SPIGULIS. In vivo skin imaging prototypes “made in Latvia”[J]. Frontiers of Optoelectronics, 2017, 10(3): 255. Janis SPIGULIS. In vivo skin imaging prototypes “made in Latvia”[J]. Frontiers of Optoelectronics, 2017, 10(3): 255.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!