光学学报, 2016, 36 (8): 0801001, 网络出版: 2016-08-18   

成都市大气消光系数时间序列随机特性分析

Stochastic Characteristic Analysis of Time Series of Extinction Coefficient in Chengdu
作者单位
成都信息工程大学大气科学学院高原大气与环境四川省重点实验室, 四川 成都 610225
摘要
对不同湿度条件下消光系数序列演变特性的正确认知是构建大气颗粒物湿度订正模型的前提和基础。利用成都市人民南路4段环境监测站所提供的2013年6月到2014年5月逐时(降雨天除外)细颗粒物(PM2.5)浓度监测数据以及相应的地面能见度、相对湿度观测数据,反演得该区域相应时段单位质量消光系数时间序列。简要论述了消光系数吸湿过程中的复杂演变性及已有湿度订正模型的非普适性;基于相空间重构理论确定该时间序列的最佳延迟时间f和最佳嵌入维数m,据此计算出饱和关联维数、最大Lyapunov指数以及Kolmogorov熵特征量,其结果显示该序列具有低维混沌的特征;应用Cao方法排除其为非线性序列的可能性;结合替代数据法论证得成都市单位质量消光系数时间序列为随机序列。该研究结论不仅明晰了单位质量消光系数序列的特性,还为大气颗粒物湿度订正模型的改进奠定理论基础。
Abstract
A correct understanding of the evolution characteristics of the extinction coefficient series under different humidity conditions is the premise and foundation to establish the correction model of atmospheric particulate matter humidity. Using the data of mass concentration of PM2.5 (excluding rainy days), together with the homologous surface visibility and relative humidity data from June 2013 to May 2014 at 4th Section, South Renmin Road of Chengdu, the corresponding unit mass extinction coefficient time series is retrieved. The complex evolution of the extinction coefficient during moisture absorption is briefly discussed, and the non-universality of the existing humidity correction model is exemplified. Based on the reconstruction of phase space theories, the optimal delay time f and the embedding dimension m are determined, and several characteristic quantities, including the saturation correlation dimension, the maximum Lyapunov index and the Komogorove entropy, are also calculated. The results show that this series has the characteristics of low dimensional chaos. The Cao method is applied to excluding the possibility that the unit mass extinction coefficient time series is nonlinear. By adopting the surrogate data method, the time series is finally proved to be stochastic. The results not only clarify the characteristics of the unit mass extinction coefficient series, but also establish the theoretical foundation for the improvement of the atmospheric particulate matter humidity.
参考文献

[1] Yuan C S, Lee C G, Liu S H, et al. Correlation of atmospheric visibility with chemical composition of Kaohsiung aerosols[J]. Atmospheric Research, 2006, 82(3-4): 663-679.

[2] 宫纯文, 李学彬, 李建玉, 等. 大气气溶胶消光系数测量新方法[J]. 光学学报, 2014, 34(1): 0101001.

    Gong Chunwen, Li Xuebin, Li Jianyu, et al. New method of aerosol extinction coefficient mearsurement[J]. Acta Optica Sinica, 2014, 34(1): 0101001.

[3] 伯广宇, 刘东, 吴德成, 等. 双波长激光雷达探测典型雾霾气溶胶的光学和吸湿性质[J]. 中国激光, 2014, 41(1): 0113001.

    Bo Guangyu, Liu Dong, Wu Decheng, et al. Two-wavelength lidar for observation of aerosol optical and hygroscopic properties in fog and haze days[J]. Chinese J Lasers, 2014, 41(1): 0113001.

[4] 陈玲红, 蒋一奇, 孙洋洋, 等. 不可溶性固态内核霾滴的散射及吸收特性分析[J]. 中国激光, 2015, 42(3): 0308001.

    Chen Linghong, Jiang Yiqi, Sun Yangyang, et al. Analysis of aborption and scattering properties of water host haze droplet with insoluble solid inclusion[J]. Chinese J Lasers, 2015, 42(3): 0308001.

[5] Pitchford M, Malm W, Schichtel B, et al. Revised algorithm for estimating light extinction from IMPROVE particle speciation data[J]. J Air Waste Manag Assoc, 2007, 57(11): 1326-1336.

[6] 严国梁, 韩永翔, 张祥志, 等. 南京地区一次灰霾天气的微脉冲激光雷达观测分析[J]. 中国环境科学, 2014, 34(7): 1667-1672.

    Yan Guoliang, Han Yongxiang, Zhang Xiangzhi, et al. Analysis of a haze event in Nanjing with micro-pulse lidar measurements[J]. China Environment Science, 2014, 34(7): 1667-1672.

[7] 韩道文, 刘文清, 刘建国, 等. 气溶胶质量浓度空间垂直分布的反演方法[J]. 中国激光, 2006, 33(11): 1567-1573.

    Han Daowen, Liu Wenqing, Liu Jianguo, et al. Retrieval method for aerosol mass concentration vertical distribution[J]. Chinese J Lasers, 2006, 33(11): 1567-1573.

[8] 陶宗明, 单会会, 麻晓敏, 等. 近地面PM2.5质量浓度廓线反演方法及个例研究[J]. 激光与光电子学进展, 2015, 52(11): 110102.

    Tao Zongming, Shan Huihui, Ma Xiaomin, et al. Retrieval method of PM2.5 mass concentration profile in near-ground and case study[J]. Laser & Optoelectronics Progress, 2015, 52(11): 110102.

[9] 李学彬, 徐青山, 魏合理, 等. 气溶胶消光系数与质量浓度的相关性研究[J]. 光学学报, 2008, 29(9): 1655-1658.

    Li Xuebin, Xu Qingshan, Wei Heli, et al. Study on relationship between extinction coefficient and mass concentration[J]. Acta Optica Sinica, 2008, 29(9): 1655-1658.

[10] 章澄昌, 周文贤. 大气气溶胶教程[M]. 北京: 气象出版社, 1995.

[11] Sloane C S, Wolff G T. Prediction of ambient light scattering using a physical model responsive to relative humidity: Validation with measurements from Detroit[J]. Atmospheric Environment(1967), 1985, 19(4): 669-680.

[12] Tang I N. Chemical and size effects of hygroscopic aerosols on light scattering coefficients[J]. J Geophys Res, 1996, 101(D14): 19245-19250.

[13] Zhang Y H, Chan C K. Understanding the hygroscopic properties of supersaturated droplets of metal and ammonium sulfate solutions using Raman spectroscopy[J]. J Phys Chem A, 2002, 106(2): 285-292.

[14] Sjogren S, Gysel M, Weingartner E, et al. Hygroscopic growth and water uptake kinetics of two-phase aerosol particles consisting of ammonium sulfate, adipic and humic acid mixtures[J]. J Aerosol Sci, 2007, 38(2): 157-171.

[15] Pueschel R F, Noll K E. Visibility and aerosol size frequency distribution[J]. Journal of Applied Meteorology, 1967, 6(6): 1045-1052.

[16] Pandis S N, Harley R A, Cass G R, et al. Secondary organic aerosol formation and transport[J]. Atmospheric Environment. Part A. General Topics, 1992, 26(13): 2269-2282.

[17] 吴兑. 近十年中国灰霾天气研究综述[J]. 环境科学学报, 2012, 32(2): 257-269.

    Wu Dui. Hazy weather research in China in the last decade: A review[J]. Acta Scientiae Circumstantiae, 2012, 32(2): 257-269.

[18] 叶兴南, 陈建民. 大气二次细颗粒物形成机理的前沿研究[J]. 化学进展, 2009, 21(2-3): 288-296.

    Ye Xingnan, Chen Jianmin. Advances in the mechanism of secondary fine particulate matters formation[J]. Progress in Chemistry, 2009, 21(2-3): 288-296.

[19] Covert D S, Charlson R J, Ahlquist N C. A study of the relationship of chemical composition and humidity to light scattering by aerosols[J]. J Appl Meteorol, 1972, 11(6): 968-976.

[20] 潘小乐. 相对湿度对气溶胶散射特性影响的观测研究[D]. 北京: 中国气象科学研究院, 2007.

    Pan Xiaole. Observation study of atmospheric aerosol scattering characteristics as a function of relative humidity[D]. Beijing: Chinese Academy of Meteorogical Sciences, 2007.

[21] 叶兴南, 陈建民. 灰霾与颗粒物吸湿增长[J]. 自然杂志, 2013, 35(5): 337-341.

    Ye Xingnan, Chen Jianmin. Haze and hygroscopic growth[J]. Chinese J Nature, 2013, 35(5): 337-341.

[22] Carrico C M, Kus P, Rood M J, et al. Mixtures of pollution, dust, sea salt, and volcanic aerosol during ACE-Asia: Radiative properties as a function of relative humidity[J]. J Geophys Res, 2003, 108(D23): 2015-2023.

[23] Shi Z, Zhang D, Hayashi M, et al. Influences of sulfate and nitrate on the hygroscopic behaviour of coarse dust particles[J]. Atmospheric Environment, 2008, 42(4): 822-827.

[24] Saxena P, Hildemann L M, McMurry P H, et al. Organics alter hygroscopic behavior of atmospheric particles[J]. J Geophys Res, 1995, 100(D9): 18755-18770.

[25] Airborne Particles Expert Group. Source apportionment of airborne particulate matter in the United Kingdom[R]. London: Department for Environment, Food & Rural Affairs, 1999-01-28.

[26] 宋宇, 唐孝炎, 方晨, 等. 北京市大气细粒子的来源分析[J]. 环境科学, 2002, 23(6): 11-16.

    Song Yu, Tang Xiaoyan, Fang Chen, et al. Source apportionment on fine in Beijing[J]. Environmental Science, 2002, 23(6): 11-16.

[27] Shi G L, Li X, Feng Y C, et al. Combined source apportionment, using positive matrix factorization-chemical mass balance and principal component analysis/multiple linear regression-chemical mass balance models[J]. Atmospheric Environment, 2009, 43(18): 2929-2937.

[28] 王淑兰, 柴发合, 周来东, 等. 成都市大气可吸入颗粒物来源解析研究[J]. 地理科学, 2006, 26(6): 717-721.

    Wang Shulan, Chai Fahe, Zhou Laidong, et al. Source analysis of air inhalational particles in Chengdu city[J]. Scientia Geographica Sinina, 2006, 26(6): 717-721.

[29] 吕金虎, 陆君安, 陈士华. 混沌时间序列分析及其应用[M]. 武汉: 武汉大学出版社, 2002.

[30] Theiler J. Spurious dimension from correlation algorithms applied to limited time-series data[J]. Physical Review A, 1986, 34(3): 2427-2432.

[31] 丁晶, 王文圣, 赵永龙. 长江日流量混沌变化特性研究: Ⅰ相空间嵌入滞时的确定[J]. 水科学进展, 2003, 14(4): 407-411.

    Ding Jing, Wang Wensheng, Zhao Yonglong. Characteristics of daily flow variation in the Yangtze River, 1, optimum determination of delay time for reconstruction of a phase space[J]. Advances in Water Science, 2003, 14(4): 407-411.

[32] Grassberger P. An optimized box-assisted algorithm for fractal dimensions[J]. Physics Letters A, 1990, 148(1-2): 63-68.

[33] 胡晓, 陈拥军, 曾敏, 等. 一种选取相空间重构最优延迟时间的算法[J]. 电子科技大学学报, 2000, 29(3): 282-285.

    Hu Xiao, Chen Yongjun, Zeng Min, et al. A new method to choose optimal delay time for phase space reconstruction[J]. Journal of University of Electronic Science and Technology of China, 2000, 29(3): 282-285.

[34] Cao L. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D: Nonlinear Phenomena, 1997, 110(1-2): 43-50.

[35] Schreiber T. Interdisciplinary application of nonlinear time series methods[J]. Physics Reports, 1999, 308(1): 1-64.

[36] Theiler J, Eubank S, Longtin A, et al. Testing for nonlinearity in time series: The method of surrogate data[J]. Physica D: Nonlinear Phenomena, 1992, 58(1-4): 77-94.

[37] 马军海, 刘立霞. 云南地区月降雨量时序数据的非线性特性研究[J]. 系统工程学报, 2007, 22(6): 561-567.

    Ma Junhai, Liu Lixia. Testing for nonlinearity in time series of monthly rainfall in Yunnan[J]. Journal of Systems Engineering, 2007, 22(6): 561-567.

孙欢欢, 倪长健, 崔蕾, 王超. 成都市大气消光系数时间序列随机特性分析[J]. 光学学报, 2016, 36(8): 0801001. Sun Huanhuan, Ni Changjian, Cui Lei, Wang Chao. Stochastic Characteristic Analysis of Time Series of Extinction Coefficient in Chengdu[J]. Acta Optica Sinica, 2016, 36(8): 0801001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!