激光与光电子学进展, 2019, 56 (20): 202420, 网络出版: 2019-10-22  

基于贵金属劈裂纳米环阵列的多重表面晶格共振 下载: 1129次

Multiple Surface Lattice Resonances Generated with Noble Metallic Split-Ring Resonator Arrays
作者单位
1 山西省高速公路信息监控中心, 山西 太原 030024
2 太原理工大学新型传感器与智能控制教育部重点实验室, 山西 太原 030024
3 太原理工大学物理与光电工程学院, 山西 太原 030024
引用该论文

张春琳, 刘杰, 侯浩杰, 李孟春. 基于贵金属劈裂纳米环阵列的多重表面晶格共振[J]. 激光与光电子学进展, 2019, 56(20): 202420.

Chunlin Zhang, Jie Liu, Haojie Hou, Mengchun Li. Multiple Surface Lattice Resonances Generated with Noble Metallic Split-Ring Resonator Arrays[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202420.

参考文献

[1] 刘安. 光子学和光电子学及其研究进展[J]. 光通信技术, 2013, 37(9): 51-53.

    Liu A. Research progress of photonics and optoelectronics[J]. Optical Communication Technology, 2013, 37(9): 51-53.

[2] MAIER[\s]{1}SA.[\s]{1}Plasmonics:[\s]{1}fundamentals[\s]{1}and[\s]{1}applications[M].[\s]{1}New[\s]{1}York:[\s]{1}Springer,[\s]{1}2007.[\s]{1}

[3] Wang W J, Ramezani M, Väkeväinen A I, et al. The rich photonic world of plasmonic nanoparticle arrays[J]. Materials Today, 2018, 21(3): 303-314.

[4] Zou S L, Janel N, Schatz G C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes[J]. The Journal of Chemical Physics, 2004, 120(23): 10871-10875.

[5] Auguié B, Barnes W L. Collective resonances in gold nanoparticle arrays[J]. Physical Review Letters, 2008, 101(14): 143902.

[6] Hooper D C, Kuppe C, Wang D Q, et al. Second harmonic spectroscopy of surface lattice resonances[J]. Nano Letters, 2019, 19(1): 165-172.

[7] Guo R. Ne ada M, Hakala T K, et al. Lasing at K points of a honeycomb plasmonic lattice[J]. Physical Review Letters, 2019, 122(1): 013901.

[8] Michaeli L, Keren-Zur S, Avayu O, et al. Nonlinear surface lattice resonance in plasmonic nanoparticle arrays[J]. Physical Review Letters, 2017, 118(24): 243904.

[9] Esposito M, Todisco F, Bakhti S, et al. Symmetry breaking in oligomer surface plasmon lattice resonances[J]. Nano Letters, 2019, 19(3): 1922-1930.

[10] Zakharko Y, Graf A, Zaumseil J. Plasmonic crystals for strong light-matter coupling in carbon nanotubes[J]. Nano Letters, 2016, 16(10): 6504-6510.

[11] Vecchi G, Giannini V, Gómez Rivas J. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas[J]. Physical Review Letters, 2009, 102(14): 146807.

[12] 吕国伟, 沈红明, 程宇清, 等. 局域表面等离激元增强荧光研究进展[J]. 科学通报, 2015, 60(33): 3169-3179.

    Lü G W, Shen H M, Cheng Y Q, et al. Advances in localized surface plasmon enhanced fluorescence[J]. Chinese Science Bulletin, 2015, 60(33): 3169-3179.

[13] Wang D Q, Yang A K, Wang W J, et al. Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices[J]. Nature Nanotechnology, 2017, 12(9): 889-894.

[14] 赖淑妹, 黄志伟, 王仰江, 等. Ag纳米结构局域表面等离激元共振模拟与分析[J]. 激光与光电子学进展, 2018, 55(12): 122601.

    Lai S M, Huang Z W, Wang Y J, et al. Simulation and analysis of local surface plasmon resonance of Ag nanostructures[J]. Laser & Optoelectronics Progress, 2018, 55(12): 122601.

[15] 崔健, 季博宇, 林景全. 激发等离激元Fano共振的金属类圆盘纳米结构体系[J]. 激光与光电子学进展, 2018, 55(6): 060002.

    Cui J, Ji B Y, Lin J Q. Plasmonic Fano resonance in metallic disk-like nanostructure system[J]. Laser & Optoelectronics Progress, 2018, 55(6): 060002.

[16] Humphrey A D, Meinzer N, Starkey T A, et al. Surface lattice resonances in plasmonic arrays of asymmetric disc dimers[J]. ACS Photonics, 2016, 3(4): 634-639.

[17] Baur S, Sanders S, Manjavacas A. Hybridization of lattice resonances[J]. ACS Nano, 2018, 12(2): 1618-1629.

[18] Wang D Q, Yang A K, Hryn A J, et al. Superlattice plasmons in hierarchical Au nanoparticle arrays[J]. ACS Photonics, 2015, 2(12): 1789-1794.

[19] 潘庭婷, 曹文, 王鸣. 多圆孔周期性银膜阵列结构的光学特性[J]. 光学学报, 2019, 39(1): 0104001.

    Pan T T, Cao W, Wang M. Optical properties of multi-hole periodic silver film array structure[J]. Acta Optica Sinica, 2019, 39(1): 0104001.

[20] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084.

[21] Zhang T, Zhang Y X, Yang Z Q, et al. Efficient THz on-chip absorption based on destructive interference between complementary meta-atom pairs[J]. IEEE Electron Device Letters, 2019, 40(6): 1013-1016.

[22] Wang J C, Ma J, Shu Z Q, et al. Terahertz metalens for multifocusing bidirectional arrangement in different dimensions[J]. IEEE Photonics Journal, 2019, 11(1): 4600311.

[23] Ren Y H, Li K, Wang F W, et al. A broadband magnetic coupling microstrip to waveguide transition using complementary split ring resonators[J]. IEEE Access, 2019, 7: 17347-17353.

[24] Chuma E L, Iano Y, Fontgalland G, et al. Microwave sensor for liquid dielectric characterization based on metamaterial complementary split ring resonator[J]. IEEE Sensors Journal, 2018, 18(24): 9978-9983.

[25] Luo X H, Cheng X, Han J A, et al. Compact dual-band bandpass filter using defected SRR and irregular SIR[J]. Electronics Letters, 2019, 55(8): 463-465.

[26] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370-4379.

[27] Vitrey A, Aigouy L, Prieto P, et al. Parallel collective resonances in arrays of gold nanorods[J]. Nano Letters, 2014, 14(4): 2079-2085.

张春琳, 刘杰, 侯浩杰, 李孟春. 基于贵金属劈裂纳米环阵列的多重表面晶格共振[J]. 激光与光电子学进展, 2019, 56(20): 202420. Chunlin Zhang, Jie Liu, Haojie Hou, Mengchun Li. Multiple Surface Lattice Resonances Generated with Noble Metallic Split-Ring Resonator Arrays[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202420.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!