Journal of Innovative Optical Health Sciences, 2018, 11 (2): 1750015, Published Online: Sep. 18, 2018  

ICAM-1 depletion in the center of immunological synapses is important for calcium releasing in T-cells

Author Affiliations
1 Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
2 Department of Immunology and Key Laboratory of Medical Molecular, Virology of MOE/MOH, School of Basic Medical Sciences, and Biotherapy Research Centre, Fudan University, Shanghai 200032, P.R. China
3 Shandong Academy of Medical Sciences, Jinan 250030, P.R. China
Abstract
T-cell activation requires the formation of the immunological synapse (IS) between a T-cell and an antigen-presenting cell (APC) to control the development of the adaptive immune response. However, calcium release, an initial signal of T-cell activation, has been found to occur before IS formation. The mechanism for triggering the calcium signaling and relationship between calcium release and IS formation remains unclear. Herein, using live-cell imaging, we found that intercellular adhesion molecule 1 (ICAM-1), an essential molecule for IS formation, accumulated and then was depleted at the center of the synapse before complete IS formation. During the process of ICAM-1 depletion, calcium was released. If ICAM-1 failed to be depleted from the center of the synapse, the sustained calcium signaling could not be induced. Moreover, depletion of ICAM-1 in ISs preferentially occurred with the contact of antigen-specific T-cells and dendritic cells (DCs). Blocking the binding of ICAM-1 and lymphocyte function-associated antigen 1 (LFA-1), ICAM-1 failed to deplete at the center of the synapse, and calcium release in T-cells decreased. In studying the mechanism of how the depletion of ICAM-1 could influence calciumrelease in T-cells, we found that the movement of ICAM-1 was associated with the localization of LFA-1 in the IS, which affected the localization of calcium microdomains, ORAI1 and mitochondria in IS. Therefore, the depletion of ICAM-1 in the center of the synapse is an important factor for an initial sustained calcium release in T-cells.
References

[1] A. Grakoui, S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, M. L. Dustin, “The immunological synapse: A molecular machine controlling T-cell activation,” Science 285, 221–227 (1999).

[2] C. R. Monks, B. A. Freiberg, H. Kupfer, N. Sciaky, A. Kupfer, “Three-dimensional segregation of supramolecular activation clusters in T cells,” Nature 395, 82–86 (1998).

[3] C. Brossard, V. Feuillet, A. Schmitt, C. Randriamampita, M. Romao, G. Raposo, A. Trautmann, “Multifocal structure of the T-cell — dendritic cell synapse,” Eur. J. Immunol. 35, 1741–1753 (2005).

[4] E. Hailman, W. R. Burack, A. S. Shaw, M. L. Dustin, P. M. Allen, “Immature CD4(+)CD8(+) thymocytes form a multifocal immunological synapse with sustained tyrosine phosphorylation,” Immunity 16, 839–848 (2002).

[5] N. Joseph, B. Reicher, M. Barda-Saad, “The calcium feedback loop and T-cell activation: How cytoskeleton networks control intracellular calcium flux,” Biochim. Biophys. Acta. 1838, 557–568 (2014).

[6] A. Babich, J. K. Burkhardt, “Coordinate control of cytoskeletal remodeling and calcium mobilization during T-cell activation,” Immunol. Rev. 256, 80–94 (2013).

[7] M. F. Krummel, M. D. Cahalan, “The immunological synapse: A dynamic platform for local signaling,” J. Clin. Immunol. 30, 364–372 (2010).

[8] J. Delon, N. Bercovici, G. Raposo, R. Liblau, A. Trautmann, “Antigen-dependent and -independent responses triggered in T cells by dendritic cells compared with B cells,” J. Exp. Med. 188, 1473–1484 (1998).

[9] K. H. Lee, A. R. Dinner, C. Tu, G. Campi, S. Raychaudhuri, R. Varma, T. N. Sims, W. R. Burack, H. Wu, J. Wang, O. Kanagawa, M. Markiewicz, P. M. Allen, M. L. Dustin, A. K. Chakraborty, A. S. Shaw, “The immunological synapse balances T-cell receptor signaling and degradation,” Science 302, 1218–1222 (2003).

[10] D. J. Irvine, M. A. Purbhoo, M. Krogsgaard, M. M. Davis, “Direct observation of ligand recognition by T cells,” Nature 419, 845–849 (2002).

[11] P. Revy, M. Sospedra, B. Barbour, A. Trautmann, “Functional antigen-independent synapses formed between T cells and dendritic cells,” Nat. Immunol. 2, 925–931 (2001).

[12] M. F. Krummel, M. M. Davis, “Dynamics of the immunological synapse: Finding, establishing and solidifying a connection,” Curr. Opin. Immunol. 14, 66–74 (2002).

[13] W. A. Comrie, S. Li, S. Boyle, J. K. Burkhardt, “The dendritic cell cytoskeleton promotes T-cell adhesion and activation by constraining ICAM-1 mobility,” J. Cell. Biol. 208, 457–473 (2015).

[14] Z. Fan, A. Marki, S. McArdle, Z. Mikulski, E. Gutierrez, B. Engelhardt, U. Deutsch, M. Ginsberg, A. Groisman, K. Ley, “Neutrophil recruitment limited by high a±nity bent 2 integrin binding ligand in cis,” Nat. Commun. 7, 12658 (2016).

[15] Z. Fan, K. Ley, “Leukocyte arrest: Biomechanics and molecular mechanisms of β2 integrin activation,” Biorheology 52, 353–77 (2015).

[16] N. Dixit, I. Yamayoshi, A. Nazarian, S. I. Simon, “Migrational guidance of neutrophils is mechanotransduced via high-a±nity LFA-1 and calcium flux,” J. Immunol. 187, 472–481 (2011).

[17] A. Quintana, M. Pasche, C. Junker, D. Al-Ansary, H. Rieger, C. Kummerow, L. Nunez, C. Villalobos, P. Meraner, U. Becherer, J. Rettig, B. A. Niemeyer, M. Hoth, “Calcium microdomains at the immunological synapse: How ORAI channels, mitochondria and calcium pumps generate local calcium signals for e±cient T-cell activation,” EMBO J 30, 3895–3912 (2011).

[18] W. Lin, Z. Fan, Y. Suo, Y. Deng, M. Zhang, J. Wang, X. Wei, Y. Chu, “The bullseye synapse formed between CD4+ T-cell and staphylococcal enterotoxin B-pulsed dendritic cell is a suppressive synapse in T-cell response,” Immunol. Cell Biol. 93, 99–110 (2015).

[19] T. He, C. Tang, S. Xu, T. Moyana, J. Xiang, “Interferon gamma stimulates cellular maturation of dendritic cell line DC2.4 leading to induction of efficient cytotoxic T-cell responses and antitumor immunity,” Cell Mol. Immunol. 4, 105–111 (2007).

[20] Z. Shen, G. Reznikoff, G. Dranoff, K. L. Rock, “Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules,” J. Immunol. 158, 2723–2730 (1997).

[21] S. Y. Tseng, J. C. Waite, M. Liu, S. Vardhana, M. L. Dustin, “T cell-dendritic cell immunological synapses contain TCR-dependent CD28-CD80 clusters that recruit protein kinase C theta,” J. Immunol. 181, 4852–4863 (2008).

[22] R. S. Friedman, P. Beemiller, C. M. Sorensen, J. Jacobelli, M. F. Krummel, “Real-time analysis of T-cell receptors in naive cells in vitro and in vivo reveals flexibility in synapse and signaling dynamics,” J. Exp. Med. 207, 2733–2749 (2010).

[23] W. Lin, Y. Suo, Y. Deng, Z. Fan, Y. Zheng, X. Wei, Y. Chu, “Morphological change of CD4(+) T-cell during contact with DC modulates T-cell activation by accumulation of F-actin in the immunology synapse,” BMC Immunol. 16, 49 (2015).

[24] A. Babich, S. Li, R. S. O'Connor, M. C. Milone, B. D. Freedman, J. K. Burkhardt, “F-actin polymerization and retrograde flow drive sustained PLCgamma1 signaling during T-cell activation,” J. Cell Biol. 197, 775–787 (2012).

[25] M. R. Duchen, “Mitochondria and calcium: From cell signalling to cell death,” J. Physiol. 529 Pt 1, 57–68 (2000).

[26] A. Quintana, C. Schwindling, A. S. Wenning, U. Becherer, J. Rettig, E. C. Schwarz, M. Hoth, “T cell activation requires mitochondrial translocation to the immunological synapse,” Proc. Natl. Acad. Sci. USA. 104, 14418–14423 (2007).

[27] W. Lin, Z. C. Fan, “Immunological Synapse Molecules”, J. Immunobiol. 1, 1000111 (2016).

[28] C. M. Fanger, M. Hoth, G. R. Crabtree, R. S. Lewis, “Characterization of T-cell mutants with defects in capacitative calcium entry: Genetic evidence for the physiological roles of CRAC channels,” J. Cell Biol. 131, 655–667 (1995).

[29] P. A. Negulescu, N. Shastri, M. D. Cahalan, “Intracellular calcium dependence of gene expression in single T lymphocytes,” Proc. Natl. Acad. Sci. USA. 91, 2873–2877 (1994).

[30] R. L. Contento, S. Campello, A. E. Trovato, E. Magrini, F. Anselmi, A. Viola, “Adhesion shapes T cells for prompt and sustained T-cell receptor signalling,” EMBO J. 29, 4035–4047 (2010).

[31] R. S. Lewis, “Calcium signaling mechanisms in T lymphocytes,” Annu. Rev. Immunol. 19, 497–521 (2001).

[32] L. E. Samelson, “Signal transduction mediated by the T-cell antigen receptor: The role of adapter proteins,” Annu. Rev. Immunol. 20, 371–394 (2002).

[33] S. Feske, “Calcium signalling in lymphocyte activation and disease,” Nat. Rev. Immunol. 7, 690–702 (2007).

[34] D. R. Bush, A. K. Chattopadhyay, “Contact time periods in immunological synapse,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 90, 042706-1–042706-6 (2014).

[35] D. R. Bush, A. K. Chattopadhyay, “Temporal dynamics in an immunological synapse: Role of thermal fluctuations in signaling,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92, 012706 (2015).

[36] A. K. Chattopadhyay, N. J. Burroughs, “Close contact fluctuations: The seeding of signalling domains in the immunological synapse,” Europhys Lett. 77, 48003 (2007).

Yuanzhen Suo, Wei Lin, Yuting Deng, Zhichao Fan, Lizeng Qin, Guosheng Jiang, Yiwei Chu, Xunbin Wei. ICAM-1 depletion in the center of immunological synapses is important for calcium releasing in T-cells[J]. Journal of Innovative Optical Health Sciences, 2018, 11(2): 1750015.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!