光子学报, 2019, 48 (10): 1048004, 网络出版: 2019-11-14   

有偏压光伏光折变晶体中艾里高斯光束的传输特性

Propagation Properties of Airy-Gaussian Beams in a Biased Photovoltaic-photorefractive Crystal
作者单位
长春理工大学 理学院,长春 130022
摘要
采用分步傅里叶法,数值模拟研究了有偏压光伏光折变晶体中艾里高斯光束的传输特性.结果表明,当艾里高斯光束初始振幅和晶体的外加电场在一定范围内时,可以形成沿直线稳定传输的呼吸式孤子.调节初始振幅或外加电场可以控制孤子的峰值强度和呼吸周期.随着入射光场分布因子的变大,孤子的平均峰值强度先增大后减小,孤子的呼吸周期先变小后变大.随着光束衰减因子的增加,孤子的平均峰值强度先增大后减小,然后再增大.此外,光束入射角为负值时,孤子向左偏移,光束入射角为正值时,孤子向右偏移.入射角只改变孤子的输出位置,不影响孤子的强度、宽度和呼吸周期.
Abstract
Propagation properties of Airy-Gaussian beams in a biased photovoltaic-photorefractive crystal are numerically investigated by using split-step Fourier method. The results show that breathing solitons that propagate stablely along a straight line can be generated when the initial amplitude of the input Airy-Gaussian beams and the external bias field of the crystal are in certain ranges. The peak intensity and the breathing period of the soliton can be controlled by adjusting the initial amplitude and the external bias field. With the increase of the initial light field distribution factor, the mean peak intensity of the soliton firstly increases and then decreases, whereas the breathing period firstly decreases and then increases. With the increase of the beam decay coefficient, the mean peak intensity of the soliton firstly increases, then decreases, and increases again. In addition, the propagation direction of the soliton can tilt to the left with a negative launch angle and to the right with a positive launch angle. The launch angle only affects the output position of the soliton and has no influence on the intensity, width and breathing period of the soliton.
参考文献

[1] SIVILOGLOU G A, CHRISTODOULIDES D N. Accelerating finite energy Airy beams[J]. Optics Letters, 2007, 32(8): 979-981.

[2] SIVILOGLOU G A, BROKY J, DOGARIU A,et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 2007, 99(21): 213901.

[3] 施瑶瑶, 吴彤, 刘友文, 等. 艾里光束自弯曲性质的控制[J]. 光子学报, 2013, 42(12): 1401-1407.

    SHI Yao-yao, WU Tong, LIU You-wen,et al. Control of self-bending Airy beams[J]. Acta Photonica Sinica, 2013, 42(12): 1401-1407.

[4] 陈志刚,许京军,胡毅,等.自加速光的调控及其新奇应用[J]. 光学学报, 2016, 36(10): 1026009.

    CHEN Zhi-gang, XU Jing-jun, HU Yi, et al. Control and novel applications of self-accelerating beams[J]. Acta Optica Sinica, 2016, 36(10): 1026009.

[5] ABDOLLAHPOUR D, SUNTSOV S, PAPAZOGLOU D G,et al. Spatiotemporal airy light bullets in the linear and nonlinear regimes[J]. Physical Review Letters, 2010, 105(25): 253901.

[6] POLYNKIN P, KOLESIK M, MOLONEY J V,et al. Curved plasma channel generation using ultraintense Airy beams[J]. Science, 2009, 324(5924): 229-232.

[7] CHENG H, ZANG W P, ZHOU W Y,et al. Analysis of optical trapping and propulsion of Rayleigh particles using Airy beam[J]. Optics Express, 2010, 18(19): 20384-20394.

[8] LI J X, ZANG W P, TIAN J G. Analysis of electron capture acceleration channel in an Airy beam[J].Optics Letters, 2010, 35(19): 3258-3260.

[9] LI J X, FAN X L, ZANG W P,et al. Vacuum electron acceleration driven by two crossed Airy beams[J]. Optics Letters, 2011, 36(5): 648-650.

[10] ROSE P, DIEBEL F, BOGUSLAWSKI M,et al. Airy beam induced optical routing[J]. Applied Physics Letters, 2013, 102(10): 101101.

[11] WIERSMA N, MARSAL N, SCIAMANNA M,et al. All-optical interconnects using Airy beams[J]. Optics Letters, 2014, 39(20): 5997-6000.

[12] LIANG Y, HU Y, SONG D H,et al. Image signal transmission with Airy beams[J]. Optics Letters, 2015, 40(23): 5686-5689.

[13] CLERICI M, HU Y, LASSONDE P,et al. Laser-assisted guiding of electric discharges around objects[J]. Science Advances, 2015, 1(5): e1400111.

[14] BERRY M V, BALAZS N L. Nonspreading wave packets[J].American Journal of Physics, 1979, 47(3): 264-267.

[15] BANDRES M A, GUTIRREZ-VEGA J C. Airy-Gauss beams and their transformation by paraxial optical systems[J].Optics Express, 2007, 15(25): 16719-16728.

[16] 许森东, 冯元新. 艾里光束通过负折射率介质的传输特性[J]. 光子学报, 2014, 44(2): 0208002.

    XU Sen-dong, FENG Yuan-xin. Study on propagation properties of the Airy beams through negative index medium[J].Acta Photonica Sinica, 2014, 44(2): 0208002.

[17] ALLAYAROV I M, TSOY E N. Dynamics of Airy beams in nonlinear media[J].Physical Review A, 2014, 90(2): 023852.

[18] CHEN W J, LU K Q, YANG J K,et al. Propagation dynamics of Airy beams and nonlinear accelerating beams in biased photorefractive media with quadratic electro-optic effect[J]. Applied Physics B, 2018, 124(11): 217.

[19] FATTAL Y, RUDNICK A, MAROM D M. Soliton shedding from Airy pulses in Kerr media[J].Optics Express, 2011, 19(18): 17298-17307.

[20] ZHANG Y Q, BELIC M, WU Z K, et al. Soliton pair generation in the interactions of Airy and nonlinear accelerating beams[J]. Optics Letters, 2013, 38(22): 4585-4588.

[21] ZHANG L F, ZHANG J G, CHEN Y,et al. Dynamic propagation of finite-energy Airy pulses in the presence of higher-order effects[J]. Journal of the Optical Society of America B-Optical Physics, 2014, 31(4): 889-897.

[22] ZHANG L F, LIU K, ZHONG H Z,et al. Effect of initial frequency chirp on Airy pulse propagation in an optical fiber[J]. Optics Express, 2015, 23(3): 2566-2576.

[23] ZHANG L F, HUANG P W, CONTI C, et al. Decelerating Airy pulse propagation in highly non-instantaneous cubic media[J]. Optics Express, 2017, 25(3): 1856-1866.

[24] 陈卫军,卢克清,惠娟利,等. 饱和非线性介质中艾里-高斯光束的传输与交互[J]. 物理学报,2016, 65(24): 244202.

    CHEN Wei-jun, LU Ke-qing, HUI Juan-li, et al. Propagation and interactions of Airy-Gaussian beams in saturable nonlinear medium[J]. Acta Physica Sinica, 2016, 65(24): 244202.

[25] CHEN W J, JU Y, LIU C Y,et al. Generation of breathing solitons in the propagation and interactions of Airy-Gaussian beams in a cubic-quintic nonlinear medium[J]. Chinese Physics B, 2018, 27(11): 114216.

[26] CHEN C D, CHEN B, PENG X,et al. Propagation of Airy-Gaussian beam in Kerr medium[J]. Journal of Optics, 2015, 17(3): 035504.

[27] PENG Y L, PENG X, CHEN B,et al. Interaction of Airy-Gaussian beams in Kerr media[J]. Optics Communications, 2016, 359: 116-122.

[28] DENG D M. Propagation of Airy-Gaussian beams in a quadratic-index medium[J].The European Physical Journal D, 2011, 65(3): 553-556.

[29] DENG D, LI H. Propagation properties of Airy-Gaussian beams[J].Applied Physics B, 2012, 106(3): 677-681.

[30] ZHOU M L, CHEN C D, CHEN B,et al. Propagation of an Airy-Gaussian beam in uniaxial crystals[J]. Chinese Physics B, 2015, 24(12): 124102.

[31] SHI Z W, XUE J, ZHU X,et al. Interaction of Airy-Gaussian beams in photonic lattices with defects[J]. Physical Review E, 2017, 95(4): 042209.

[32] SHI Z W, XUE J, ZHU X,et al. Propagation of an Airy-Gaussian beam in defected photonic lattices[J]. Applied Physics B, 2017, 123(5): 159.

[33] JIANG Q C, SU Y L, MA Z W,et al. Propagation properties of Airy-Gaussian beams in centrosymmetric photorefractive media[J]. Journal of Modern Optics, 2018, 65(19): 2243-2249.

[34] LU K Q, TANG T T, ZHANG Y P.One-dimensional steady-state spatial solitons in photovoltaic photorefractive materials with an external applied field[J]. Physical Review A, 2000, 61(5): 053822.

[35] SIVILOGLOU G A, BROKY J, DOGARIU A, et al. Ballistic dynamics of Airy beams[J]. Optics Letters, 2008, 33(3): 207-209.

[36] ZHANG Y Q, BELIC M R, SUN J, et al. Controllable acceleration and deceleration of Airy beams via initial velocity[J]. Romanian Reports in Physics, 2015, 67: 1099-1107.

[37] DENG F, YU W H, DENG D M. Controllably accelerating and decelerating Airy-Bessel-Gaussian wave packets[J].Laser Physics Letters, 2016, 13(11): 116202.

[38] ZHAN K Y, YANG Z D, JIAO R Y,et al. Controllable interaction of Airy beams via initial launch angle in Kerr media[J]. Optics Communications, 2019, 432: 49-53.

[39] HUI J L, LU K Q, ZHANG B J,et al. Surface defect lattice solitons in biased photovoltaic-photorefractive crystals[J]. Optics & Laser Technology, 2015, 75: 57-62.

张拓, 陈卫军, 母一宁, 刘春阳, 彭鋆祺. 有偏压光伏光折变晶体中艾里高斯光束的传输特性[J]. 光子学报, 2019, 48(10): 1048004. ZHANG Tuo, CHEN Wei-jun, MU Yi-ning, LIU Chun-yang, PENG Jun-qi. Propagation Properties of Airy-Gaussian Beams in a Biased Photovoltaic-photorefractive Crystal[J]. ACTA PHOTONICA SINICA, 2019, 48(10): 1048004.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!