强激光与粒子束, 2018, 30 (8): 083004, 网络出版: 2018-08-21  

基于预群聚的回旋管注入锁相研究

Study on injection locked gyrotron with pre-bunched beam
作者单位
中国工程物理研究院 应用电子学研究所, 四川 绵阳 621900
摘要
开展了40 kW预群聚注入锁相回旋管的理论与模拟设计。基于全电磁仿真方法完成了预群聚腔的设计,并采用给定场理论对电子束经过预调制腔后的群聚状态进行了计算。采用自洽理论获得了回旋管的自由振荡工作参数,并计算了振荡频率随各种参数变化的规律,由此提出了锁相带宽的要求。采用PIC粒子模拟进行了锁相状态的模拟,得到7 mm漂移距离下锁定增益可达30.5 dB,相应的锁相带宽为20 MHz。如果进一步增长漂移距离或者进一步增大输入功率,锁相带宽还会增大。理论计算和粒子模拟结果表明40 kW级回旋管注入锁相具有良好的可行性。
Abstract
40 kW injection locked gyrotron is designed based on theoretical calculations and simulations. The interaction structure is formed by two cavities which operate under TE01-TE03 mode pair. The state of the beam across the pre-bunching cavity is calculated with the fixed profile theory, and the operation parameters of the gyrotron under free oscillation state is calculated with the self-consistent theory. The regulation of the oscillation frequency varying with the parameters is achieved, based on which the locking bandwidth is proposed. A PIC code is used for simulating the injection locking state, a gain of 30.5 dB and a locking bandwidth of 20 MHz are achieved under a drifting length of 7 mm. If the drifting length or the input power is increased, the locking bandwidth could be wider. The calculations and simulations show that injection locking of the 40 kW gyrotron is feasible.
参考文献

[1] Thumm M. Recent advances in the worldwide fusion gyrotron development[J]. IEEE Trans Plasma Sci, 2014, 42(3): 590-599.

[2] Ergakov V S,Moiseev M A. Theory of synchronization of oscillations in a cyclotron-resonance maser monotron by an external signal[J]. Radiophysics & Quantum Electronics, 1975, 18(1): 89-97.

[3] Bazhanov V S, Ergakov V S, Moiseev M A. Synchronization of CRM monotron by electron-beam modulation[J]. Radiophysics & Quantum Electronics, 1977, 20(1):90-95.

[4] Manheimer W M. Theory of the multi-cavity phase locked gyrotron oscillator[J]. International Journal of Electronics, 1987, 63(1): 29-47.

[5] Manheimer W M, Fliflet A W, Gold S H, et al. The NRL (Naval Research Laboratory)phase-locked gyrotron oscillator program for SDIO/IST[R]. NRL Memorandum Report 6163, 1998.

[6] Gold S H, Fliflet A W, Black W M, et al. Highpower multi-cavity phase-locked gyrotron oscillator experiment[C]//13th Int Conf on Infrared and Millimeter Waves. 1988: 326-327.

[7] 唐昌建, 杨中海, 刘濮鲲. 高功率回旋管锁相[J]. 强激光与粒子束, 1995, 7(1):49-56.(Tang Changjian, Yang Zhonghai, Liu Pukun. Phase-locking of high power gyrotron. High Power Laser and Particle Beams, 1995, 7(1): 49-56)

[8] Guo H Z, Hoppe D J, Rodgers J, et al. Phase-locking of a second-harmonic gyrotron oscillator using a quasi-optical circulator to separate injection and output signals[C]//IEEE Int Conf on Plasma Science. 1995: 211-212.

[9] Jin Jianbo. Quasi-optical mode converter for a coaxial cavity gyrotron[D]. Chengdu: Southwest Jiaotong University, 2005.

[10] 刘建卫, 赵青. 准光模式变换器研究与设计[J]. 强激光与粒子束, 2013, 25(10):2663-2666.(Liu Jianwei, Zhao Qing. Research and design of quasi-optical mode converter. High Power Laser and Particle Beams, 1995, 7(1): 49-56.

[11] Danly B G, Temkin R J. Generalized nonlinear harmonic gyrotron theory[J]. Phys Fluids, 1986, 29(2): 561-567.

[12] Fliflet A W, Read M E, Chu K R, et al. A self-consistent field theory for gyrotron oscillators: application to a low Q gyromonotron[J]. International Journal of Electronics, 1982, 53(6): 505-521.

马国武, 卓婷婷, 胡林林, 孙迪敏, 陈洪斌, 孟凡宝. 基于预群聚的回旋管注入锁相研究[J]. 强激光与粒子束, 2018, 30(8): 083004. Ma Guowu, Zhuo Tingting, Hu Linlin, Sun Dimin, Chen Hongbin, Meng Fanbao. Study on injection locked gyrotron with pre-bunched beam[J]. High Power Laser and Particle Beams, 2018, 30(8): 083004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!