Photonics Research, 2020, 8 (6): 06000940, Published Online: May. 20, 2020   

In situ optical backpropagation training of diffractive optical neural networks Download: 917次

Tiankuang Zhou 1,2,3†Lu Fang 2,3†Tao Yan 1,2Jiamin Wu 1,2Yipeng Li 1,2Jingtao Fan 1,2Huaqiang Wu 4,5Xing Lin 1,2,4,7,*Qionghai Dai 1,2,6,8,*
Author Affiliations
1 Department of Automation, Tsinghua University, Beijing 100084, China
2 Institute for Brain and Cognitive Science, Tsinghua University, Beijing 100084, China
3 Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
4 Beijing Innovation Center for Future Chip, Tsinghua University, Beijing 100084, China
5 Institute of Microelectronics, Tsinghua University, Beijing 100084, China
6 Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
7 e-mail: lin-x@tsinghua.edu.cn
8 e-mail: qhdai@tsinghua.edu.cn
Copy Citation Text

Tiankuang Zhou, Lu Fang, Tao Yan, Jiamin Wu, Yipeng Li, Jingtao Fan, Huaqiang Wu, Xing Lin, Qionghai Dai. In situ optical backpropagation training of diffractive optical neural networks[J]. Photonics Research, 2020, 8(6): 06000940.

References

[1] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 2015, 521: 436-444.

[2] KrizhevskyA.SutskeverI.HintonG. E., “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems (2012), pp. 10971105.

[3] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, B. Kingsbury. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Process. Mag., 2012, 29: 82-97.

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot. Mastering the game of go with deep neural networks and tree search. Nature, 2016, 529: 484-489.

[5] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui, G. Corrado, S. Thrun, J. Dean. A guide to deep learning in healthcare. Nat. Med., 2019, 25: 24-29.

[6] G. Barbastathis, A. Ozcan, G. Situ. On the use of deep learning for computational imaging. Optica, 2019, 6: 921-943.

[7] MathisA.MamidannaP.CuryK. M.AbeT.MurthyV. N.MathisM. W.BethgeM., DeepLabCut: Markerless Pose Estimation of User-Defined Body Parts with Deep Learning (Nature, 2018).

[8] TrabelsiC.BilaniukO.ZhangY.SerdyukD.SubramanianS.SantosJ. F.MehriS.RostamzadehN.BengioY.PalC. J., “Deep complex networks,” arXiv:1705.09792 (2017).

[9] HeK.ZhangX.RenS.SunJ., “Deep residual learning for image recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 770778.

[10] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 2014, 345: 668-673.

[11] J. Pei, L. Deng, S. Song, M. Zhao, Y. Zhang, S. Wu, G. Wang, Z. Zou, Z. Wu, W. He. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature, 2019, 572: 106-111.

[12] B. Marr, B. Degnan, P. Hasler, D. Anderson. Scaling energy per operation via an asynchronous pipeline. IEEE Trans. Very Large Scale Integr. Syst., 2012, 21: 147-151.

[13] J. M. Shainline, S. M. Buckley, R. P. Mirin, S. W. Nam. Superconducting optoelectronic circuits for neuromorphic computing. Phys. Rev. Appl., 2017, 7: 034013.

[14] PrucnalP. R.ShastriB. J., Neuromorphic Photonics (CRC Press, 2017).

[15] D. Woods, T. J. Naughton. Optical computing: photonic neural networks. Nat. Phys., 2012, 8: 257-259.

[16] D. R. Solli, B. Jalali. Analog optical computing. Nat. Photonics, 2015, 9: 704-706.

[17] Q. Zhang, H. Yu, M. Barbiero, B. Wang, M. Gu. Artificial neural networks enabled by nanophotonics. Light Sci. Appl., 2019, 8: 1.

[18] X. Luo. Engineering optics 2.0: a revolution in optical materials, devices, and systems. ACS Photon., 2018, 5: 4724-4738.

[19] P. Minzioni, C. Lacava, T. Tanabe, J. Dong, X. Hu, G. Csaba, W. Porod, G. Singh, A. E. Willner, A. Almaiman. Roadmap on all-optical processing. J. Opt., 2019, 21: 063001.

[20] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 2017, 11: 441-446.

[21] T. W. Hughes, R. J. England, S. Fan. Reconfigurable photonic circuit for controlled power delivery to laser-driven accelerators on a chip. Phys. Rev. Appl., 2019, 11: 064014.

[22] X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, A. Ozcan. All-optical machine learning using diffractive deep neural networks. Science, 2018, 361: 1004-1008.

[23] T. Yan, J. Wu, T. Zhou, H. Xie, F. Xu, J. Fan, L. Fang, X. Lin, Q. Dai. Fourier-space diffractive deep neural network. Phys. Rev. Lett., 2019, 123: 023901.

[24] G. Van der Sande, D. Brunner, M. C. Soriano. Advances in photonic reservoir computing. Nanophotonics, 2017, 6: 561-576.

[25] L. Larger, A. Baylón-Fuentes, R. Martinenghi, V. S. Udaltsov, Y. K. Chembo, M. Jacquot. High-speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys. Rev. X, 2017, 7: 011015.

[26] J. Feldmann, N. Youngblood, C. Wright, H. Bhaskaran, W. Pernice. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 2019, 569: 208-214.

[27] R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić, D. Englund. Large-scale optical neural networks based on photoelectric multiplication. Phys. Rev. X, 2019, 9: 021032.

[28] I. Chakraborty, G. Saha, K. Roy. Photonic in-memory computing primitive for spiking neural networks using phase-change materials. Phys. Rev. Appl., 2019, 11: 014063.

[29] T. Deng, J. Robertson, Z.-M. Wu, G.-Q. Xia, X.-D. Lin, X. Tang, Z.-J. Wang, A. Huartado. Stable propagation of inhibited spiking dynamics in vertical-cavity surface-emitting lasers for neuromorphic photonic networks. IEEE Access, 2018, 6: 67951-67958.

[30] J. Robertson, T. Deng, J. Javaloyes, A. Hurtado. Controlled inhibition of spiking dynamics in VCSELs for neuromorphic photonics: theory and experiments. Opt. Lett., 2017, 42: 1560-1563.

[31] HughesT. W.WilliamsonI. A.MinkovM.FanS., “Wave physics as an analog recurrent neural network,” arXiv:1904.12831 (2019).

[32] J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot, L. Larger, D. Brunner. Reinforcement learning in a large-scale photonic recurrent neural network. Optica, 2018, 5: 756-760.

[33] E. Khoram, A. Chen, D. Liu, L. Ying, Q. Wang, M. Yuan, Z. Yu. Nanophotonic media for artificial neural inference. Photon. Res., 2019, 7: 823-827.

[34] BackerA. S., “Computational inverse design for cascaded systems of metasurface optics,” arXiv:1906.10753 (2019).

[35] S. Maktoobi, L. Froehly, L. Andreoli, X. Porte, M. Jacquot, L. Larger, D. Brunner. Diffractive coupling for photonic networks: how big can we go?. IEEE J. Sel. Top. Quantum Electron., 2019, 26: 7600108.

[36] Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.-C. Chen, P. Chen, G.-B. Jo, J. Liu, S. Du. All optical neural network with nonlinear activation functions. Optica, 2019, 6: 1132-1137.

[37] J. Chang, V. Sitzmann, X. Dun, W. Heidrich, G. Wetzstein. Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep., 2018, 8: 12324.

[38] ChenH.JayasuriyaS.YangJ.StephenJ.SivaramakrishnanS.VeeraraghavanA.MolnarA., “ASP vision: optically computing the first layer of convolutional neural networks using angle sensitive pixels,” in IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 903912.

[39] LuoY.MenguD.YardimciN. T.RivensonY.VeliM.JarrahiM.OzcanA., “Design of task-specific optical systems using broadband diffractive neural networks,” arXiv:1909.06553 (2019).

[40] ChangJ.WetzsteinG., “Deep optics for monocular depth estimation and 3D object detection,” arXiv:1904.08601 (2019).

[41] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner. Gradient-based learning applied to document recognition. Proc. IEEE, 1998, 86: 2278-2324.

[42] T. W. Hughes, M. Minkov, Y. Shi, S. Fan. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica, 2018, 5: 864-871.

[43] M. Hermans, J. Dambre, P. Bienstman. Optoelectronic systems trained with backpropagation through time. IEEE Trans. Neural Netw. Learn. Syst., 2014, 26: 1545-1550.

[44] M. Hermans, M. Burm, T. Van Vaerenbergh, J. Dambre, P. Bienstman. Trainable hardware for dynamical computing using error backpropagation through physical media. Nat. Commun., 2015, 6: 6729.

[45] K. Wagner, P. Demetri. Multilayer optical learning networks. Appl. Opt., 1987, 26: 5061-5076.

[46] D. Psaltis, D. Brady, K. Wagner. Adaptive optical networks using photorefractive crystals. Appl. Opt., 1988, 27: 1752-1759.

[47] I. Yamaguchi, T. Zhang. Phase-shifting digital holography. Opt. Lett., 1997, 22: 1268-1270.

[48] O. Mendoza-Yero, G. Mínguez-Vega, J. Lancis. Encoding complex fields by using a phase-only optical element. Opt. Lett., 2014, 39: 1740-1743.

[49] M. W. Matthès, P. del Hougne, J. de Rosny, G. Lerosey, S. M. Popoff. Optical complex media as universal reconfigurable linear operators. Optica, 2019, 6: 465-472.

[50] A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics, 2012, 6: 283-292.

[51] Y. Li, Y. Xue, L. Tian. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica, 2018, 5: 1181-1190.

[52] N. Antipa, G. Kuo, R. Heckel, B. Mildenhall, E. Bostan, R. Ng, L. Waller. DiffuserCam: lensless single-exposure 3D imaging. Optica, 2018, 5: 1-9.

[53] ShirmaneshG. K.SokhoyanR.WuP. C.AtwaterH. A., “Electro-optically tunable universal metasurfaces,” arXiv:1910.02069 (2019).

[54] Z. Wang, C. Li, P. Lin, M. Rao, Y. Nie, W. Song, Q. Qiu, Y. Li, P. Yan, J. P. Strachan. In situ training of feed-forward and recurrent convolutional memristor networks. Nat. Mach. Intell., 2019, 1: 434-442.

Tiankuang Zhou, Lu Fang, Tao Yan, Jiamin Wu, Yipeng Li, Jingtao Fan, Huaqiang Wu, Xing Lin, Qionghai Dai. In situ optical backpropagation training of diffractive optical neural networks[J]. Photonics Research, 2020, 8(6): 06000940.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!