红外与激光工程, 2016, 45 (10): 1006005, 网络出版: 2016-11-14   

激光冲击304不锈钢微观组织和性能研究

Study on microstructure and performances of 304 stainless steel treaded by laser shock processing
作者单位
空军工程大学 等离子体动力学重点实验室, 陕西 西安 710038
摘要
采用激光冲击强化改善304不锈钢耐磨性能。利用电子背散射衍射(EBSD)、显微硬度和球磨实验分析了激光冲击前后试样的微观组织和性能, 探讨了激光冲击对其磨损性能的影响机理。结果表明, 激光冲击304不锈钢后, 其比磨损率下降, 显微硬度从200 HV提高到260 HV。这是由于激光冲击强化304不锈钢使得材料表层晶粒碎化和大量亚结构形成, 同时诱发马氏体相变的共同作用下, 提高了304不锈钢的显微硬度, 改善了其耐磨性能。
Abstract
In order to improve the wear performance of 304 stainless steel, a method of laser shock processing(LSP) was put forward. The microstructure and performances of 304 stainless steel which are treated with and without laser shock peening were examined by electron backscattering diffraction(EBSD), microhardness and the ball milling experiment, the wear mechanism of 304 stainless steel produced by laser shock peening was discussed. The result shows that the wear rate of samples is decreases and microhardness is increased from 200 HV in primitive state to 260 HV which is treated by LSP. Under the action of grain fragmentation, a large number of sub structure formation at surface and the martensitic phase transformation, the microhardness and wear resistance of 304 stainless steel are improved.
参考文献

[1] 中国航空材料手册编辑委员会. 中国航空材料手册[M]. 北京: 中国标准出版社, 1988.

    Chinese Aeronautical Materials Handbook Compiling Committee. Aeronautical Materials Handbook[M]. Beijing: Chinese Standards Press, 1988. (in Chinese)

[2] 樊学双, 杨志刚, 张弛. 热浸镀Al-Si-Y对 S304 不锈钢高温性能的影响[J]. 稀有金属材料与工程, 2011, 40(S1): 571-574.

    Fan Xueshuang, Yang Zhigang, Zhang Chi. High temperature properties of the hot dipping Al-Si-Y coating on S304 stainless steel[J]. Rare Metal Materials and Engineering, 2011, 40(S1): 571-574. (in Chinese)

[3] 童幸生,张婷. 低温离子渗碳对304不锈钢耐磨性影响的研究[J]. 新技术新工艺, 2013(5): 89-91.

    Tong Xingsheng, Zhang Ting. Research on wear resistance of 304 stainless steel by low temperature plasma carburizing[J]. New Technology & New Process, 2013(5): 89-91. (in Chinese)

[4] 田华, 石江龙, 杨威. 304不锈钢离子渗氮工艺研究.热处理, 2007, 22(4): 24-26.

    Tian Hua, Shi Jianglong, Yang Wei. Ion nitriding for 304 stainless steel[J]. Heat Treatment, 2007, 22(4): 24-26. (in Chinese)

[5] Yamauchi N, Okamoto A, Tukahara H, et al. Friction and wear of DLC films on 304 austenitic stainless steel in corrosive solutions[J]. Surface and Coatings Technology, 2003, 174-175: 465-469.

[6] 田修波, 汤宝寅, Chu Paul K. AISI304钢表面低电压等离子体基离子注入层摩擦磨损性能研究[J]. 摩擦学学报, 2000, 20(2): 81-84.

    Tian Xiubo, Tang Baoyin, Chu Paul K. Tribological behavior of the modified layers of AISI304 stainless steel implanted with low-voltage plasma-source ion implantation[J]. Tribology, 2000, 20(2): 81-84. (in Chinese)

[7] 张洪旺, 刘刚, 黑祖昆, 等. 表面机械研磨诱导AISI304不锈钢表层纳米化(I.组织与性能)[J]. 金属学报, 2003, 29(4): 342-346.

    Zhang Hongwang, Liu Gang, Hei Zukun, et al. Surface nanocrystallization of AISI304 stainless steel induced by surface mechanical attrition treatment I. Structure and property[J]. Acta Metallrugica Sinica, 2003, 29(4): 342-346. (in Chinese)

[8] 高玉魁. 不同表面改性强化处理对TC4钛合金表面完整性及疲劳性能的影响[J]. 金属学报, 2016, 52(8): 915-922.

    Gao Yukui. Influence of different surface modification treatments on surface integrity and fatigue performance of TC4 titanium alloy[J]. Acta Metallrugica Sinica, 2016, 52(8): 915-922. (in Chinese)

[9] 李靖, 李军, 何卫锋, 等. TC17钛合金激光多次冲击强化后组织和力学性能研究[J]. 红外与激光工程, 2014, 43(9): 2889-2895.

    Li Jing, Li Jun, He Weifeng, et al. Microstructure and mechanical properties of TC17 titanium alloy by laser shock peening with different impacts[J]. Infrared and Laser Engineering, 2014, 43(9): 2889-2895. (in Chinese)

[10] 王小平, 王大承. 基于BP神经网络的20CrMo钢激光强工艺参数优化控制[J]. 红外与激光工程, 2004, 33(3): 269-273.

    Wang Xiaoping, Wang Dacheng. Optimizing control of laser surface strengthening parameters for processing 20CrMo steel based on BP neural network[J]. Infrared and Laser Engineering, 2004, 33(3): 269-273. (in Chinese)

[11] Li Y Q, He W F, Li Y H, et al. Characterization of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy by laser shock peening[J]. Materials Science Forum, 2012, 697-698: 466-469.

[12] 李玉琴, 王学德, 杨竹芳, 等. 激光冲击强化提高纯铜耐磨性能的研究[J]. 强激光与粒子束, 2016, 28(2): 202-206.

    Li Yuqin, Wang Xuede, Yang Zhufang, et al. Wear resistance of copper improved by laser shock peening [J]. High Power Laser and Particle Beams, 2016, 28(2): 202-206. (in Chinese)

[13] Amar H, Vignal V, Krawiec H, et al. Influence of the microstructure and laser shock processing(LSP) on the corrosion behavior of the AA2050-T8 aluminium alloy[J].Corrosion Science, 2011, 53(10): 3215-3221.

[14] 李晓轩, 孙锡军, 王华明. 奥氏体不锈钢lCr18Ni9Ti激光冲击强化研究[J]. 宇航材料工艺, 1999, 29(4): 16-20.

    Li Xiaoxuan, Sun Xijun, Wang Huaming. Laser shock process of austenitie stainless steel 1Cr18Ni9Ti[J]. Aerospace Materiais & Technology, 1999, 29(4): 16-20. (in Chinese)

[15] 孔德军, 周朝政, 吴永忠. 304不锈钢激光冲击处理后的残余应力产生机理[J]. 红外与激光工程, 2010, 39(4): 736-740.

    Kong Dejun, Zhou Chaozheng, Wu Yongzhong. Mechanism on residual stress of 304 stainless steel by laser shock processing[J]. Infrared and Laser Engineering, 2010, 39(4): 736-740. (in Chinese)

[16] Peyre P, Fabbro R. Laser shock processing: a review of the physics and applications[J]. Opt Quantum Electron, 1995, 27(12): 1213-1229.

李玉琴, 王学德, 宋飞龙, 柴艳. 激光冲击304不锈钢微观组织和性能研究[J]. 红外与激光工程, 2016, 45(10): 1006005. Li Yuqin, Wang Xuede, Song Feilong, Chai Yan. Study on microstructure and performances of 304 stainless steel treaded by laser shock processing[J]. Infrared and Laser Engineering, 2016, 45(10): 1006005.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!