光电工程, 2012, 39 (8): 69, 网络出版: 2012-09-12   

WDM与OTDR结合的弱光栅分布式温度传感网络

Distributed Temperature Sensor System Based on Weak Reflection Fiber Gratings Combined with WDM and OTDR
作者单位
1 燕山大学信息科学与工程学院河北省特种光纤与光纤传感重点实验室, 河北秦皇岛 066004
2 江苏天明机械集团有限公司, 江苏连云港 222062
摘要
提出一种基于弱反射布拉格光栅的新型分布式温度传感网络, 将 WDM 与 OTDR 相结合, 采用 WDM 技术提高光栅的复用容量, 利用 OTDR 对各个弱光栅进行实时检测, 以实现光栅的密集串行复用, 并提高空间分辨率。使用可调谐脉冲激光为光源, 多组不同中心波长弱光栅等间距刻制在一根光纤上。利用一根光纤刻制的三组反射率为 3%, 中心波长分别为 1 544.660 nm、1 545.802 nm 和 1 546.900 nm 的 9 个 FBG 进行了温度实验。实验结果表明, 在 5~80℃的温度范围内, FBG 的中心波长随温度变化呈良好的线性, 线性度达到 99.6%以上, 温度测量的分辨率最高达到 0.11℃, 空间分辨率可达 2 m。
Abstract
Based on a weak reflection Bragg grating, a new distributed temperature sensing network is proposed by combining Wavelength Division Multiplexing (WDM) with Optical Time-domain Reflectometry (OTDR). WDM technology is used to enhance the FBG multiplexing capacity, and OTDR is used for each weak grating for real-time detection, so as to realize the intensive serial multiplexed grating and improve the spatial resolution. Using the tunable pulsed laser as the light source, multiple groups of different center wavelength grating are engraved in weak isometric in one fiber. Reflectivity of three groups is 3%. The center wavelengths are 1 544.660 nm, 1 545.802 nm and 1 546.900 nm three FBG, divided into three groups. In one fiber, quasi-distributed measurement is realized. Experimental results show that, in 5~80℃ temperature range, FBG center wavelength with temperature change shows good linearity, linearity reaching more than 99.6%, the temperature measurement resolution of up to 0.11℃, a spatial resolution of 2 m.
参考文献

[1] KERSEY A D, DAVIS M A, PATRICK H J, et al. Fiber grating sensors [J]. Journal of Lightwave Technology(S0733-8724), 1997, 15(8):1442-1460.

[2] 鲍吉龙, 章献民, 陈抗生, 等. FBG 传感网络技术研究 [J]. 光通信技术, 2001, 25(2):84-89.

    BAO Ji-long, ZHANG Xian-min, CHEN Kang-sheng, et al. FBG Sensor Network Thnology [J]. Optical Communication Technology, 2001, 25(2):84-89.

[3] Koo K P, Tveten A B, Vohra S T. DWDM of fiber Bragg grating sensors without sensor spectral dynamic range limitation [J]. Electronics Letters(S0013-5194), 1999, 4:168-170.

[4] Sano Y, Yoshino T. Fast optical wavelength interrogator employing arrayed waveguide grating for distributed Fiber Bragg Grating sensors [J]. Lightwave Technology(S0733-8724), 2003, 21(1):132-139.

[5] EOM TAE JOONG, KIM MYOUNG JIN, LEE BYEONG, et al. Temperature Monitoring System Based on Fiber Bragg Grating Arrays with a Wavelength Tunable OTDR [J]. IEICE Trans Electron(S0916-8524), 2005, E88-C(5):933-937.

[6] Cathy Crunelle, Marc Wuilpart, Christophe Caucheteur, et al. Original interrogation system for quasi-distributed FBG-based temperature sensor with fast demodulation technique [J]. Sensors and Actuators A:Physical(S0924-4247), 2009, 150(2): 192-198.

[7] 张燕君, 苏玉玲, 韦波, 等. 基于光电缆的分布式温度传感网络的实验研究 [J]. 光电工程, 2011, 38(1):49-54.

    ZHANG Yan-jun, SU Yu-ling, WEI Bo, et al. Experiment Research of Distributed Temperature Sensing Network Based on the Optical Cable [J]. Opto-Electronic Engineering, 2011, 38(1):49-54.

[8] 王玉田. 光电子学与光纤传感器技术 [M]. 北京:国防工业出版社, 2003:104-109.

[9] ZHANG Po, Cerecedo-Nunez H H, QI B, et al. Optical time-domain refectometry interrogation of multiplexing low-refectance Bragg-grating-based sensor system [J]. Optical Engineering(S0091-3286), 2003, 42(6):1597-1603.

[10] LIU Jian-sheng, ZHANG Jing, LI Xin, et al. Study on Multiplexing Ability of Identical Fiber Bragg Gratings in a Single Fiber [J]. Chinese Journal of Aeronautics(S1000-9361), 2011, 24:607-612.

张燕君, 谢晓鹏, 徐华斌. WDM与OTDR结合的弱光栅分布式温度传感网络[J]. 光电工程, 2012, 39(8): 69. ZHANG Yan-jun, XIE Xiao-peng, XU Hua-bin. Distributed Temperature Sensor System Based on Weak Reflection Fiber Gratings Combined with WDM and OTDR[J]. Opto-Electronic Engineering, 2012, 39(8): 69.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!