中国光学, 2017, 10 (4): 469, 网络出版: 2017-08-30   

20~1 250 Hz光纤激光加速度传感系统设计

20-1 250 Hz fiber laser acceleration sensing system
作者单位
1 海军工程大学 兵器工程系,湖北 武汉 430033
2 中国舰船研究院,北京 100101
3 海军大连舰艇学院,辽宁 大连 116013
摘要
为了实现高灵敏度、宽频响应的光纤型加速度传感器,以光纤激光器作为加速度传感器的传感元件,建立了光纤激光加速度传感系统,并对该系统的传感原理、灵敏度和谐振频率等性能进行了分析和实验。采用竖直式加速度传感器结构,结构中的传感组件主要由质量块和中空的细钢管组成,光纤激光器受预应力作用后粘接在钢管内部,在加速度作用下,钢管产生的应变引起光纤激光器的应变和折射率发生改变,导致光纤激光器的出射波长随之发生改变,然后使用干涉解调技术检测出波长的动态变化,即可获得波长中包含的加速度振幅和频率信息。实验结果表明,在20~1 250 Hz频段内,竖直式光纤激光加速度传感器的灵敏度约为-126.2 dB[参考值1 rad/(μm/s2)],频响曲线的波动幅度在±1.9 dB范围内,加速度响应动态范围为77.46~170.26 dB[500 Hz频点,参考值1 μm/(s2·Hz1/2)],加速度分辨率优于0.01 m/s2。
Abstract
In order to realize a fiber accelerometer with high-sensitivity and wide band, the fiber laser is used as sensor element to establish a fiber laser acceleration sensing system. The sensing principle and performance parameters, such as sensitivity and resonance frequency, are elaborated and analyzed. If the fiber laser acceleration sensor is a vertical type, the structure consists mainly of an inertial mass and a steel hollow tube. The fiber laser is fixed in the steel tube after tensing, and the acceleration causes displacement of the sensor case relative to the inertial mass and the strain tube. So the acceleration will produce the distortion of the fiber laser and change the wavelength of the laser. Using the interferometric interrogation system, the amplitude and frequency information of the acceleration signal can be demodulated. The experimental results show that the phase sensitivity is -126.2 dB [reference value: 1 rad/(μm/s2)] and the fluctuation amplitude of the sensitivity during 20-1 250 Hz is ±1.9 dB. The dynamic range of the acceleration response at the 500 Hz frequency is 77.46-170.26 dB [reference value: 1 μm/(s2·Hz1/2)]. The fiber laser accelerometer system can work with 0.01 m/s2 acceleration resolution during 20-1 250 Hz.
参考文献

[1] 徐国权,熊代余. 光纤光栅传感技术在工程中的应用[J]. 中国光学,2013,6(3): 306-317.

    XU G Q,XIONG D Y. Application of fiber Bragg grating sensing technology in engineering[J]. Chinese Optics,2013,6(3): 306-317. (in Chinese)

[2] 曾宇杰,王俊,杨华勇,等. 基于L形刚性梁与弹性膜片结构的低频光纤光栅加速度传感器[J]. 光学学报,2015,35(12): 1206005.

    ZENG Y J,WANG J,YANG H Y,et al.. Fiber Bragg grating accelerometer based on L-shaped rigid beam and elastic diaphragm for low-frequency vibration measurement[J]. Acta Optica Sinica,2015,35(12): 1206005. (in Chinese)

[3] 王永皎,袁银权,梁磊. 一种低成本的双光纤光栅加速度传感器[J]. 武汉理工大学学报,2015,37(5): 106-110.

    WANG Y J,YUAN Y Q,LIANG L. Low-cost acceleration sensor based on dual fiber optic gratings[J]. Journal of Wuhan University of Technology,2015,37(5): 106-110. (in Chinese)

[4] 刘钦朋,乔学光,傅海威,等. 两点封装的光纤布拉格加速度传感器设计[J]. 光学 精密工程,2012,20(9): 2110-2115.

    LIU Q P,QIAO X G,FU H W,et al.. Design of FBG acceleration sensor based on two-dot coating[J]. Optics and Precision Engineering,2012,20(9): 2110-2115. (in Chinese)

[5] 郭永兴,张东生,周祖德,等. 光纤布拉格光栅加速度传感器研究进展[J]. 激光与光电子学进展,2013,50: 060001.

    GUO Y X,ZHANG D S,ZHOU Z D,et al.. Research progress in fiber Bragg grating accelerometer[J]. Laser & Optoelectronics Progress,2013,50: 060001. (in Chinese)

[6] 沈洋,孙利民. 高灵敏度温度自补偿型光纤光栅加速度传感器设计[J]. 结构工程师,2009,25(2): 141-146.

    SHEN Y,SUN L M. Design of FBG-based accelerometer with high sensitivity[J]. Structural Engineers,2009,25(2): 141-146. (in Chinese)

[7] AMES G H,MAGUIRE J M. Erbium fiber laser accelerometer[J]. IEEE,2007,7(4): 557-561.

[8] 李芳,何俊,徐团伟,等. 光纤激光传感技术及其应用[J]. 红外与激光工程,2009,38(6): 1025-1032.

    LI F,HE J,XU T W,et al.. Fiber laser sensing technology and its applications[J]. Infrared and Laser Engineering,2009,38(6): 1025-1032. (in Chinese)

[9] KOO K P,KERSEY A D. Bragg grating based laser sensor systems with interferometric interrogation and wavelength division multiplexing[J]. Lightwave Technology,1995,13(7): 1243-1249.

[10] ZHANG J T,YU Y L,ZHANG Y L,et al.. High precision fiber DFB laser micro-accelerometer[J]. Advanced Materials Research,2014,852: 296-299.

[11] 赵泳强,程凌浩,周峰,等. 双频干涉型光纤激光加速度传感器的指向性特性[J]. 量子电子学报,2016,33(3): 372-377.

    ZHAO Y Q,CHENG L H,ZHOU F,et al.. Directional characteristics of dual frequency interferometric fiber laser acceleration sensor[J]. Chinese Journal of Quantum Electronics,2016,33(3): 372-377. (in Chinese)

[12] HILL D J,NASH P J,JACKSON D A,et al.. A fiber laser hydrophone array[J]. SPIE,1999,3860: 55-66.

[13] 廖延彪. 光纤光学[M]. 北京: 清华大学出版社,2000: 199-201.

    LIAO Y B. Optical fiber optics[M]. Beijing: Tsinghua University Press,2000: 199-201. (in Chinese)

[14] 于洋,孟州,罗洪. 对称推挽式光纤光栅振动传感器设计研究[J]. 半导体光电,2011,32(1): 118-122.

    YU Y,MENG ZH,LUO H. Study on fiber Bragg grating vibrating sensors with symmetry push-pull configuration[J]. Semiconductor Optoelectronics,2011,32(1): 118-122. (in Chinese)

[15] 顾宏灿,黄俊斌,苑秉成,等. 基于干涉解调技术的光纤激光器水声传感系统[J]. 光电工程,2008,35(12): 73-77.

    GU H C,HUANG J B,YUAN B CH,et al.. Fiber laser acoustic pressure sensing system based on interferometric demodulation technique[J]. Opto-Electronic Engineering,2008,35(12): 73-77. (in Chinese)

顾宏灿, 黄俊斌, 程玲, 杨光, 毛欣. 20~1 250 Hz光纤激光加速度传感系统设计[J]. 中国光学, 2017, 10(4): 469. GU Hong-can, HUANG Jun-bin, CHENG Ling, YANG Guang, MAO Xin. 20-1 250 Hz fiber laser acceleration sensing system[J]. Chinese Optics, 2017, 10(4): 469.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!