激光与光电子学进展, 2015, 52 (8): 080104, 网络出版: 2015-05-29   

随机相位屏法数值模拟太赫兹波在湍流大气中的传输 下载: 585次

Numerical Simulation of Terahertz Wave Propagating in Turbulent Atmosphere Using the Random Phase Screen Method
作者单位
三峡大学理学院, 湖北 宜昌 443002
摘要
太赫兹波的大气传输特性对于太赫兹的空间应用有重要意义。采用随机相位屏法研究了太赫兹波在湍流大气中的水平传输特性。在忽略大气对太赫兹波的吸收与散射、仅考虑大气折射率随机起伏的前提下,通过改变传输距离等参数,对太赫兹波经过湍流大气传输后接收面上的平均光强分布和闪烁指数等进行了研究。作为对比,在同等大气湍流条件下,对可见光波也进行了相应的数值模拟与分析。研究结果表明,同等条件下,太赫兹波受大气湍流的影响明显小于可见光波;大气湍流对太赫兹波的短程应用影响较小。
Abstract
The propagation characteristics of terahertz (THz) wave in the turbulent atmosphere are very important to the space applications of THz wave. The horizontal propagation characteristics of THz wave in atmospheric turbulence have been studied by the random phase screen method. Through ignoring the scattering and absorption of THz atmospheric conditions and focusing on the atmospheric refractive index fluctuation, the average intensity distribution and scintillation indexes on the receiver plane were studied under different propagation distances in the atmospheric turbulence. For comparison, the visible light waves were also carried out through numerical simulation and analysis under the same conditions. The results show that under the same conditions, the influence of atmospheric turbulence on THz wave is much smaller than it on the visible light wave. Furthermore, atmospheric turbulence has little impact on the short-range application of THz wave.
参考文献

[1] 姚建铨, 汪静丽, 钟凯, 等. THz 辐射大气传输研究和展望[J]. 光电子·激光, 2010, 21(10): 1582-1588.

    Yao Jianquan, Wang Jingli, Zhong Kai, et al.. Study and outlook of THz radiation atmospheric propagation[J]. Journal of Optoelectronics · Laser, 2010, 21(10): 1582-1588.

[2] 申金娥, 荣健, 刘文鑫. 太赫兹技术在通信方面的研究进展[J]. 红外与激光工程, 2006, 35(3): 342-347.

    Shen Jin′ e, Rong Jian, Liu Wenxin. Progress of terahertz in communication technology[J]. Infrared and Laser Engineering, 2006, 35(3): 342-347.

[3] 王忆锋, 毛京湘. 太赫兹技术的发展现状及应用前景分析[J]. 光电技术应用, 2008, 23(1): 1-5.

    Wang Yifeng, Mao Jingxiang. Analysis on development status of terahertz technology and application prospect[J]. Electro-Optic Technology Application, 2008, 23(1): 1-5.

[4] 初洪娜. 关于太赫兹通信技术的综合分析探讨[J]. 硅谷, 2011, (14): 34-35.

    Chu Hongna. Comprehensive analysis of terahertz communication technology study[J]. Journal of silicon valley, 2011, (14): 34-35.

[5] 齐娜, 张卓勇, 相玉红. 太赫兹技术在医学检测和诊断中的应用研究[J]. 光谱学与光谱分析, 2013, 33(8): 2064-2070.

    Qi Na, Zhang Zhuoyong, Xiang Yuhong. Application of terahertz technology in medical testing and diagnosis[J]. Spectroscopy and Spectral Analysis, 2013, 33(8): 2064-2070.

[6] 张蕾, 徐新龙, 李福利. 太赫兹(THz)成像的进展概况[J]. 量子电子学报, 2005, 22(2): 129-134.

    Zhang Lei, Xu Xinlong, Li Fuli. Review of the progress of T-ray imaging[J]. Chinese Journal of Quantum Electronics, 2005, 22(2): 129-134.

[7] Yao J, Wang R, Cui H, et al.. Atmospheric propagation of terahertz radiation[J]. Remote Sensing-Advanced Techniques and Platforms, 2012: 371.

[8] Grischkowsky D R. THz photonics: The synergy of ultrafast optics, electronics, micro-microwaves and quasi-optics[J]. Terahertz Science and Technology, 2012, 5(1): 48-66.

[9] Zhou W, Zhang Y. Propagation characteristics of the terahertz pulse in the free space[C]. Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, Joint 31st International Conference on. IEEE, 2006: 562.

[10] Paine S, Blundell R. The terahertz atmosphere[C]. Proc 15th International Symposium on Space Terahertz Technology, 2004: 418-425.

[11] Ryu C, Kong S G. Atmospheric degradation correction of terahertz beams using multiscale signal restoration[J]. Appl Opt, 2010, 49(5): 927-935.

[12] Mandehgar M, Yang Y, Grischkowsky D. Atmosphere characterization for simulation of the two optimal wireless terahertz digital communication links[J]. Opt Lett, 2013, 38(17): 3437-3440.

[13] Frehlich R. Simulation of laser propagation in a turbulent atmosphere[J]. Appl Opt, 2000, 39(3): 393-397.

[14] Frehlich R. Effects of refractive turbulence on ground-based verification of coherent Doppler lidar performance[J]. Appl Opt, 2000, 39(24): 4237-4246.

[15] 饶瑞中. 现代大气光学[M]. 北京: 科学出版社, 2011: 367-404.

    Rao Ruizhong. Modern Atmospheric Optics[M]. Beijing: Science Press, 2011: 367-404.

[16] 翟超, 武凤, 杨清波, 等. 自由空间光通信中大气光束传输数值模拟研究[J]. 中国激光, 2013, 40(5): 0505004.

    Zhai Chao, Wu Feng, Yang Qingbo, et al.. Simulation research of laser beam atmospheric propagation in free-space optical communication[J]. Chinese J Laser, 2013, 40(5): 0505004.

[17] 于继平, 齐文宗, 郭春凤, 等. 激光大气传输特性的数值模拟[J]. 激光与红外, 2008, 38(6): 523-527.

    Yu Jiping, Qi Wenzong, Guo Chunfeng, et al.. Numerical simulation of laser propagation through atmospheric turbulence[J]. Laser and Infrared, 2008, 38(6): 523-527.

[18] L C Andrews, R L Phillips. Laser Beam Propagation through Random Media[M]. Bellingham: SPIE Optical Engineering Press, 2005.

[19] 黄印博, 王英俭. 激光大气传输数值模拟中对计算参量的选取[J]. 大气与环境光学学报, 2007, 2(1): 23-27.

    Huang Yinbo, Wang Yingjian. Choosing computing parameters in the numerical simulation of laser propagation effects[J]. Journal of Atmospheric and Environmental Optics, 2007, 2(1): 23-27.

李婉, 曾曙光, 刘雁. 随机相位屏法数值模拟太赫兹波在湍流大气中的传输[J]. 激光与光电子学进展, 2015, 52(8): 080104. Li Wan, Zeng Shuguang, Liu Yan. Numerical Simulation of Terahertz Wave Propagating in Turbulent Atmosphere Using the Random Phase Screen Method[J]. Laser & Optoelectronics Progress, 2015, 52(8): 080104.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!