中国激光, 2020, 47 (1): 0102004, 网络出版: 2020-01-09   

基于NSGA-Ⅱ算法的同轴送粉激光熔覆工艺多目标优化 下载: 1139次

Multi-Objective Optimization of Coaxial Powder Feeding Laser Cladding Based on NSGA-II
作者单位
上海航天设备制造总厂有限公司, 上海 200245
引用该论文

赵凯, 梁旭东, 王炜, 杨萍, 郝云波, 朱忠良. 基于NSGA-Ⅱ算法的同轴送粉激光熔覆工艺多目标优化[J]. 中国激光, 2020, 47(1): 0102004.

Kai Zhao, Xudong Liang, Wei Wang, Ping Yang, Yunbo Hao, Zhongliang Zhu. Multi-Objective Optimization of Coaxial Powder Feeding Laser Cladding Based on NSGA-II[J]. Chinese Journal of Lasers, 2020, 47(1): 0102004.

参考文献

[1] 伏琳. 智能制造新模式下 “中国制造” 面临的机遇和挑战[J]. 机床与液压, 2016, 44(9): 161-164, 89.

    Fu L. Opportunities and challenges facing Chinese manufacturing under new model of intelligent manufacturing[J]. Machine Tool & Hydraulics, 2016, 44(9): 161-164, 89.

[2] 张坚, 吴文妮, 赵龙志. 激光熔覆研究现状及发展趋势[J]. 热加工工艺, 2013, 42(6): 131-134, 139.

    Zhang J, Wu W N, Zhao L Z. Research progress and development trend of laser cladding[J]. Hot Working Technology, 2013, 42(6): 131-134, 139.

[3] 刘亚楠, 孙荣禄, 牛伟, 等. Ti811表面激光熔覆复合涂层的微观组织及摩擦磨损性能[J]. 中国激光, 2019, 46(1): 0102010.

    Liu Y N, Sun R L, Niu W, et al. Microstructure and friction and wear resistance of laser cladding composite coating on Ti811 surface[J]. Chinese Journal of Lasers, 2019, 46(1): 0102010.

[4] Janicki D. Laser cladding of Inconel 625-based composite coatings reinforced by porous chromium carbide particles[J]. Optics & Laser Technology, 2017, 94: 6-14.

[5] Paul C P, Mishra S K, Premsingh C H, et al. Studies on laser rapid manufacturing of cross-thin-walled porous structures of Inconel 625[J]. The International Journal of Advanced Manufacturing Technology, 2012, 61: 757-770.

[6] Chen W J, Chen H, Li C C, et al. Microstructure and fatigue crack growth of EA4T steel in laser cladding remanufacturing[J]. Engineering Failure Analysis, 2017, 79: 120-129.

[7] Lee C, Park H, Yoo J, et al. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr[J]. Applied Surface Science, 2015, 345: 286-294.

[8] 王战, 孙文磊, 黄海博, 等. 超声振动对低搭接率激光熔覆层质量的影响[J]. 激光与光电子学进展, 2019, 56(14): 141402.

    Wang Z, Sun W L, Huang H B, et al. Effect of ultrasonic vibrations on quality of laser cladding layer with low overlap rate[J]. Laser & Optoelectronics Progress, 2019, 56(14): 141402.

[9] 程伟, 武美萍, 唐又红, 等. 42CrMo合金表面单道轨迹激光熔覆工艺研究[J]. 激光与光电子学进展, 2019, 56(4): 041402.

    Cheng W, Wu M P, Tang Y H, et al. Laser cladding process of 42CrMo surface with single-pass[J]. Laser & Optoelectronics Progress, 2019, 56(4): 041402.

[10] Aubry P, Blanc C, Demirci I, et al. Laser cladding and wear testing of nickel base hardfacing materials: influence of process parameters[J]. Journal of Laser Applications, 2017, 29(2): 022504.

[11] Zhang Z, Kovacevic R. Multiresponse optimization of laser cladding steel+VC using grey relational analysis in the Taguchi method[J]. JOM, 2016, 68(7): 1762-1773.

[12] Farahmand P, Kovacevic R. Parametric study and multi-criteria optimization in laser cladding by a high power direct diode laser[J]. Lasers in Manufacturing and Materials Processing, 2014, 1: 1-20.

[13] 许向川, 温海骏, 王俊元, 等. 基于响应面的装备零件再制造激光熔覆工艺参数优化[J]. 真空科学与技术学报, 2018, 38(7): 615-620.

    Xu X C, Wen H J, Wang J Y, et al. Optimization of laser cladding conditions in response surface method for repairing damaged alloy parts[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(7): 615-620.

[14] 雷凯云, 秦训鹏, 刘华明, 等. 基于神经网络的宽带激光熔覆熔池特征参数预测[J]. 光电子·激光, 2018, 29(11): 1212-1220.

    Lei K Y, Qin X P, Liu H M, et al. Prediction on characteristics of molten pool in wide-band laser cladding based on neural network[J]. Journal of Optoelectronics·Laser, 2018, 29(11): 1212-1220.

[15] Caiazzo F, Caggiano A. Laser direct metal deposition of 2024 Al alloy: trace geometry prediction via machine learning[J]. Materials, 2018, 11(3): 444.

[16] 田静, 侯击波. 支持向量机的功能复合材料离心铸造参数自适应优化[J]. 铸造技术, 2018, 39(8): 1731-1734.

    Tian J, Hou J B. FGM centrifugal casting parameters adaptive optimization with SVM[J]. Foundry Technology, 2018, 39(8): 1731-1734.

[17] Sarker TK, Tang ML. A strength Pareto evolutionary algorithm for live migration of multiple interdependent virtual machines in data centers[M] ∥Arik S, Huang T, Lai W, et al. Neural information processing. Lecture notes in computer science. Cham: Springer, 2015, 9490: 114- 121.

[18] Nag K, Pal T, Pal N R. ASMiGA: an archive-based steady-state micro genetic algorithm[J]. IEEE Transactions on Cybernetics, 2015, 45(1): 40-52.

[19] Knowles J D, Corne D W. Approximating the nondominated front using the Pareto archived evolution strategy[J]. Evolutionary Computation, 2000, 8(2): 149-172.

[20] Chaube A, Benyoucef L, Tiwari M K. An adapted NSGA-2 algorithm based dynamic process plan generation for a reconfigurable manufacturing system[J]. Journal of Intelligent Manufacturing, 2012, 23(4): 1141-1155.

[21] Vardhan M V, Sankaraiah G, Yohan M. Optimization of process parameters in CNC milling for machining P20 steel using NSGA-II[J]. IOSR Journal of Mechanical and Civil Engineering, 2017, 14(3): 57-63.

赵凯, 梁旭东, 王炜, 杨萍, 郝云波, 朱忠良. 基于NSGA-Ⅱ算法的同轴送粉激光熔覆工艺多目标优化[J]. 中国激光, 2020, 47(1): 0102004. Kai Zhao, Xudong Liang, Wei Wang, Ping Yang, Yunbo Hao, Zhongliang Zhu. Multi-Objective Optimization of Coaxial Powder Feeding Laser Cladding Based on NSGA-II[J]. Chinese Journal of Lasers, 2020, 47(1): 0102004.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!