激光与光电子学进展, 2003, 40 (5): 43, 网络出版: 2006-06-27  

波导的溶胶-凝胶工艺

作者单位
摘要
对于光学波导与导波设备、电路的制造而言,溶胶-凝胶工艺的出现不失为一种有效途径.特别是集成光学有源器件及电路中掺活性掺杂物(如钕、铒、铈).本文回顾了基于溶胶-凝胶工艺的有源器件、电路的最新研究.对于光学放大器中的激活溶胶-凝胶薄膜的模拟分析,我们提出激光器原子磁化理论及其速率方程,适当考虑了波导参数.采用波束传播法研究激活掺杂溶胶-凝胶薄膜设备(如直线波导、丫形支管、定向耦合器)的传播及增益特性.也在研究掺铈薄膜中布拉格光栅的形成,在微电机系统(MEMS)的未来应用也在研究中,可采用溶胶-凝胶工艺形成光层,并通过机械作用加以控制.
Abstract
参考文献

[1] Opt. Eng., 1998, 37(4)

[2] Natarajan S R. Theoretical and Experimental Studies on Optical Amplification in Sol-Gel Films. Indian Institute of Science,Bangalore, India, Apr. 2000.

[3] Desurvire E. Erbium Doped Fiber Amplifiers. Wiley Interscience, New York, 1994.

[4] Miniscalco W J. Erbium doped glasses for fiber amplifiers at 1500 nm. J. Lightwave Technol., 1991, 9(2):234~250

[5] Digonnet M J F, Gaeta C J. Theoretical analysis of optical fiber laser amplifiers and oscillators. Appl. Opt., 1985,24(3)333~342

[6] Mears R Z, Reekie L, Jallncey I M et al.. Low-noise erbium-doped fiber amplifier operating at 1.54 μm. Electron. Lett., 1987,23(19):1026~1028

[7] Jiang S, Myers M, Peyghambarian N. Er3+-doped phosphate glasses and lasers. J. Non-Crystalline Solids, 1998, 239:143~148

[8] Meng Z, Yoshimura T, Nakata Y et al.. Improvement of fluorescence characteristics of Er3+-doped fluoride glass by Ce3+codoping. Jpn. J. Appl. Phys., 1999, 38(12A):L1409~L1411

[9] Camy P, Roman J E, Willems F W et al.. Ion-exchanged planar lossless splitter at 1.5 μm. Electron. Lett., 1996, 32(4)321~322

[10] Barbier D, Rattay M, Andre F S et al.. Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters. IEEE Photon. Technol. Lett., 1997, 9:315~317

[11] Syms R R A. Advances in channel waveguide lithium niobate integrated optics. Opt. Quantum Electron. Lett, 1988, 20:189~213

[12] Allain J Y, Monerie M, Poignant H. Room temperature cw tunable green upconversion holmium fiber laser. Electron. Lett.,1990, 26:261~263

[13] Najafi S I. Ed. Introduction to Glass Integrated Optics. Artech House, Norwood, MA, 1993

[14] Lumholt O, Jarklev A B, Rasmussen T et al.. Rare earth-doped integrated glass components: Modeling and op tinization. J.Lightwave Technol., 1995, 13:275~262

[15] Yang L, Saavedra S S, Armstrong N R et al.. Fabrication and characterization of low-loss, sol-gel planar waveguides. Anal.Chem., 1994, 66(8):1254~1260

[16] Yamaga M, Yusa K, Miyazaki Y. Theoretical analysis of waveguide laser amplifier using Nd doped garnet crystalline thin film.IEICE Trans. Electron., 1996, E-69(9):956~967

[17] Ohtsuki T, Peyghambarian N. Gain characteristics of a high concentration Er3+-doped phosphate glass waveguide. J. Appl.Phys., 1995, 78(6):3617~3621

[18] Ghosh R N, Shmulovich J, Kane C F et al.. 8-mW threshold Er3+-doped planar waveguide amplifier. IEEE Photon. Technol.Lett., 1996, 8:518~520

[19] Righini G C, Capecchi S, Pelli S et al.. Erbium doped glass waveguides for integrated optical amplifiers and lasers. Proc. Int.Conf Fiber Optics and Photonics (PHOTONICS'96), Madras, India, 1996, 917~922

[20] Barbier E, Hyde R L. Erbium doped glass waveguide devices. Integrated Optical Circuits and Components: Design and Applications, Marcel-Dekker, New York, 1999

[21] Sohler W, Suche H. Erbium doped lithium niobate waveguide devices. Integrated Optical Circuits and Components: Design and Applications, Marcel-Dekker, New York, 1999

[22] Delevaque E, Georges T, Monerie M et al.. Modeling of pair-induced quenching in erbium-doped silicate fibers. IEEE Photon.Technol. Lett., 1993, 5(1):73~75

[23] Snoeks E, van den Hven G N, Polman A. Optimization of an Er-doped silica glass optical waveguide amplifier. IEEE J.Quant. Electon. , 1996, 32:1680~1684

[24] Arai K, Namikawa H, Kumata K et al.. Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass. J. Appl. Phys., 1986, 59(10):3430~3436

[25] Hill K O, Fujii Y, Johnson D C et al.. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication.Appl. Phy. Lett., 1978, 32(10):647~649

[26] Xie W X, Niay P, Bernage P et al.. Experimental evidence of two types of photorefractive effects occurring during photoinscriptions of Bragg gratings within germanosilicate fibers. Opt. Commun., 1993, 104:185~195

[27] Douay M, Xie W X, Taunay T et al.. Densification involved in the UV based photosensitivity of silica glasses and optical fibers. J. Lightwave Technol., 1997, 15:1329~1342

[28] Dong L, Cruz J L, Tucknott J A et al.. Strong photosensitive gratings in tin-doped phosphosilicate optical fibers. Opt. Lett.,1995, 20(19):1982~1984

[29] Dong L, Archambault J L, Taylor E et al.. Photosensitivity in tantalum-doped silica optical fibers. J. Opt. Soc. Am. (B), 1995,12(9):1747~1750

[30] Dong L, Wells P J, Hand D P et al.. Photosensitivity in Ce3+-doped optical fibers. J. Opt. Soc. Am. (B), 1993, 10:89~93

[31] Dong L, Archambault J L, Reekie L et al.. Bragg gratings in Ce3+ doped fibers written by a single excimer pulse. Opt. Lett.,1993, 18:661~663

[32] Malo B, Albert J, Bilodeau F et al.. Photosensitivity in phosphorus-doped silica glass and optical waveguides. Appl. Phys.Lett., 1994, 65(4):394~396

[33] Svalgaard M, Poulsen C V, Bjarklev A et al.. Direct UV writing of buried singlemode channel waveguides in Ge-doped silica films. Electron. Lett., 1994, 30(17):1401~1403

[34] Canning J, Sceats M G, Flaming S. Grating structures with phase mask period in silica-on-silicon planar waveguides. Opt.Commun., 1999, 171:213~217

[35] Ganguli D. Sol-gel glasses: Some recent trends. Bull. Mater. Sci., 1995, 18:47~52

[36] Holmes A S, Syms R R A, Li M et al.. Fabrication of buried channel waveguides on silicon substrates using spin-on glass.Appl. Opt., 1993, 32(25):4916~4921

[37] Syms R R A, Schneider V, Huang W et al.. Low loss achieved in sol-gel based silica-on-silicon integrated optics using borophosphosilicate glass. Electron. Lett., 1995, 31(21):1833~1834

[38] Syms RR A, Holmes A S. Reflow and burial of channel waveguides formed in sol-gel glass on Si substrates. IEEE Photon.Technol. Lett., 1993, 5:1077~1079

[39] Ballato J, Riman T E, Snitzer E. Sol-gel synthesis of fluoride optical materials for planar integrated photonic applications. J.Non-Cryst. Solids, 1997, 213-214:126~136

[40] Du X M, Touam T, Degachi L et al.. Sol-gel waveguide fabrication parameters: An experimental investigation. Opt. Eng., 1998,37(4):1101~1104

[41] Fardad A, Andrews M, Milova G et al.. Fabrication of ridge waveguides: A new sol-gel route. Appl. Opt., 1998, 37(2):2429~2434

[42] Fardad M A, Fallahi M. Organic-inorganic materials for integrated optoelectronics. Electron. Lett., 1998, 34(20):1940~1941

[43] Porque J, Coudray P, Moreau Y et al.. Propagation in sol-gel channel waveguides: Numerical and experimental approaches.Opt. Eng., 1998, 37(4):1105~1110

[44] Orignac X, Barbier D, Du X M et al.. Fabrication and characterization of sol-gel planar waveguides doped with rare-earth ions. Appl. Phys. Lett., 1996, 69(12):895~897

[45] Orignac X, AlmediaR M. Silica-based sol-gel optical waveguides on silicon. Proc. IEE Optoelectronics, 1996, 143:287~292

[46] Bahtat A, Bouazaoui M, Bahtat M et al.. Fluorescence of Er+3 ions in TiO2 planar waveguides prepared by a sol-gel process.Opt. Commun., 1994, 111:55~60

[47] Strohhofer C, Fick J, Vasconceleos H C et al.. Active optical properties of Er-containing crystallites in sol-gel derived glass films. J. Non-Cryst. Solids, 1998, 226:182~191

[48] Yeatman E M, Ahmad M M, McCarthy O et al.. Optical gain in Er-doped SiO2-TiO2 waveguides fabricated by the sol-gel technique. Opt. Commun., 1999, 164:19~25

[49] Roth M, Hardy A, Ruschin S. Amplified spontaneous emmision in dye-doped sol-gel amplifiers. IEEE J. Quantum Electron.,2001, 37:189~198

[50] Touam T, Du M, Fardad M A et al.. Sol-gel waveguides with Bragg grating. Opt. Eng., 1998, 37(4):1136~1142

[51] Najafi S I, Touam T, Sara R et al.. Sol-gel glass waveguide and grating on silicon. J. Lightwave Technol., 1998, 16:1640~1646

[52] Fardad M A, Touam T, Meshkinfam P et al.. UV-light imprinted Bragg grating in sol-gel ridge glass waveguide with almost 100% reflectivity. Electron. Lett., 1997, 33(12):1069~1070

[53] Moreau Y, Arguel P, Courdary P et al.. Direct printing of gratings on sol-gel layers. Opt. Eng., 1998, 37(4):1130~1135

[54] Desurvire E. Study of the complex atomic susceptibility of erbium-doped fiber amplifiers. J. Lightwave. Technol., 1990, 8:1517~1527

[55] Siegman A E. Lasers. Oxford University Press, 1986

[56] Yariv A. Optical Electronics. CBS College Publishing, New York, 1985

[57] Nishihara H, Haruna M, Suhara T. Optical Integrated Circuits. New York: McGraw-Hill, 1989

[58] Pollock C R. Fundamentals of Optoelectronics. IL, Irwin, Chicago, 1995

[59] Natrajan S R, Rammurthi A V, Selvarajan A et al.. Amplification of light in sol-gel based Nd-glass waveguides. Proc. SPIE Conf. Optoelectronics and High Power Lasers and Applications, Photonics West, San Jose, CA, 1998

[60] Kumar A A, Hegde G M, Kumar T K et al.. Bragg grating on cerium doped sol-gel waveguides for sensor applications. Proc.Int. Conf. Smart Materials, Structures and Systems, Bangalore, India, 1999:239~243

[61] Natarajan S R, Joseph M J, SrinivasT et al.. Fabrication of rare earth doped sol-gel based composite planar waveguides on glass. Proc. Int. Conf. Applications of Photonics Technology, Ottawa, Canada, 1998, 3:371~373

[62] Selvarajan A, Natarajan S R. Optical amplification in sol-gel based waveguides. Proc. Int. Conf. Optics and Lasers, Dehradun,India, 1998, 1:438~444

[63] Tahar T, Du X M, Amir F et al.. Sol-gel waveguides with Bragg grating. Opt. Eng., 1998, 37(4):1136~1142

[64] Selvarajan A, Pattnaik P K, Gupta V M et al.. Micro-opto-electro-mechanical (MOEM) vibration sensor. Proc. SPIE Smart Structures and Materials: Smart Electronics and MEMS, Newport Beach, CA, 2000, 3990:78~85

吴晓雯. 波导的溶胶-凝胶工艺[J]. 激光与光电子学进展, 2003, 40(5): 43. 吴晓雯. [J]. Laser & Optoelectronics Progress, 2003, 40(5): 43.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!