光学学报, 2012, 32 (7): 0714002, 网络出版: 2012-05-24   

表面等离子体激元微盘的优化设计及应用

Optimal Design and Application of Surface Plasmon Polaritions Microdisk
卢启景 1,*吴根柱 1,2,3陈达如 1,2刘军 1,2刘旭安 1,2周沛 1,2
作者单位
1 浙江师范大学光学信息研究所, 浙江 金华 321004
2 浙江师范大学与浙江大学光学联合研究实验室, 浙江 杭州 310058
3 中国科学院上海微系统与信息技术研究所信息功能材料国家重点实验室, 上海 200050
摘要
表面等离子体激元(SPP)微腔具有很高的品质因子和极小的模式体积,在光电子器件研究方面具有重要的应用价值。采用有限元法对表面等离子体激元的金属覆盖介质微盘谐振腔进行理论模拟,研究考虑微盘底半径、介质层厚度及金属膜厚度等参数对微盘表面等离子体模的品质因子及模体积的影响。研究表明,在光通信波段1550 nm附近获得高品质因子(1000以上),极低模式体积的表面等离子体微盘。最后研究了利用优化设计的微盘进行折射率传感的应用,获得了高达300 nm/RIU的折射率传感灵敏度。
Abstract
Surface plasmon polaritions microcavities have attracted considerable attention due to their high quality factor, ultra-small mode volume and wide applications in optoelectronic devices. A kind of surface plasmon polaritions metal-coated microdisk resonator is theoretically simulated and optimized by using finite element method. The quality factor and mode volume of the plasmonic mode of the microdisk are theoretically investigated by considering different parameters of the microdisk such as the bottom radius, the thickness of dielectric, and the thickness of metal coating. High quality factor (>1000), ultra-small mode volume surface plasmon polaritions microcavities are achieved for the optical telecommunication wavelength around 1550 nm. Finally, a refractive index sensing application of the optimized microdisk is also investigated, which achieves a high sentivity of 300 nm/RIU.
参考文献

[1] K. J. Vahala. Optical microcavities[J]. Nature, 2003, 424(6950): 839~846

[2] R. W. Boyd, J. E. Heebner. Sensitive disk resonator photonic biosensor[J]. Appl. Opt., 2001, 40(31): 5742~5747

[3] A. Polman, B. Min, J. Kalkman et al.. Ultra-low threshold erbium-implanted toroidal microlaser on silicon[J]. Appl. Phys. Lett., 2004, 84(7): 1037~1039

[4] T. Carmon, K. Vahala. Visible continuous emission from a silica microphotonic device by third-harmonic generation[J]. Nat. Phys., 2007, 3(6): 430~435

[5] S. M. Spillane, T. J. Kippenberg, K. J. Vahala et al.. Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics[J]. Phys. Rev. A, 2005, 14(3): 1094~1105

[6] T. Aoki, B. Dayan, E. Wilcut et al.. Observation of strong coupling between one atom and a monolithic microresonator[J]. Nature, 2006, 443(7112): 671~674

[7] 顾铮天, 冯仕猛, 梁培辉 等. 表面等离子体激元共振溶胶凝胶薄膜传感器[J]. 光学学报, 2001, 21(1): 83~87

    Gu Zhengtian, Feng Shimeng, Liang Peihui et al.. Sol-gel film sensor based on surface plasmon resonance[J]. Acta Optica Sinica, 2001, 21(1): 83~87

[8] L. Maleki, A. B. Matsko, A. A. Savchenkov et al.. Tunable delay line with interacting whispering-gallery-mode resonators[J]. Opt. Lett., 2004, 17(1): 626~628

[9] C. H. Dong, Y. F. Xiao, Z. F. Han et al.. Low-threshold microlaser in ErYb phosphate glass coated microsphere[J]. IEEE Photon. Technol. Lett., 2008, 20(5): 342~344

[10] E. Ozbay. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189~193

[11] 周林, 朱永元. 金属异质波导阵列中的表面等离激元传播特性[J]. 光学学报, 2008, 28(6): 1047~1050

    Zhou Lin, Zhu Yongyuan. Propagation characteristics of surface plasmon polaritons in a metal heterowaveguide array[J]. Acta Optica Sinica, 2008, 28(6): 1047~1050

[12] A. Hosseini, Y. Massoud. Nanoscale surface plasmon based resonator using rectangular geometry[J]. Appl. Phys. Lett., 2007, 90(18): 181102

[13] H. T. Miyazaki, Y. Kurokawa. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity[J]. Phys. Rev. Lett., 2006, 96(9): 097401

[14] C. E. Hofmann, E. J. R. Vesseur, L. A. Sweatlock et al.. Plasmonic modes of annular nanoresonators imaged by spectrally resolved cathodoluminescence[J]. Nano Lett., 2007, 7(12): 3612~3617

[15] Y. Song, J. Wang, M. Yan et al.. Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor[J]. J. Opt., 2011, 13(7): 075001

[16] S. A. Maier. Plasmonic field enhancement and SERS in the effective mode volume picture[J]. Opt. Express, 2006, 14(5): 1957~1964

[17] H. Ditlbacher, A. Hohenau, D. Wagner et al.. Silver nanowires as surface plasmon resonators[J]. Phys. Rev. Lett., 2005, 95(25): 257403

[18] H. T. Miyazaki, Y. Kurokawa. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity[J]. Phys. Rev. Lett., 2006, 96(9): 097401

[19] B. Min, E. Ostby, V. Sorger et al.. High-Q surface-plasmon-polariton whispering-gallery microcavity[J]. Nature, 2009, 457(7228): 455~458

[20] D. K. Armani, T. J. Kippenberg, S. M. Spillane et al.. Ultra-high-Q toroid microcavity on a chip[J]. Nature, 2003, 421(6926): 925~928

[21] P. B. Johnson, R. W. Christy. Optical constants of the noble metals[J]. Phys. Rev. B, 1972, 6(12): 4370~4379

[22] M. Oxborrow. Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators[J]. IEEE Trans. Microw. Theory Techn., 2007, 55(6): 1209~1218

[23] C. L. Zou, Y. F. Xiao, Z. F. Han. High-Q surface-plasmon-polariton whispering-gallery microcavity[J]. J. Opt. Soc. Am. B, 2010, 27(12): 2495~2498

[24] R. F. Oulton, V. J. Sorger, D. A. Genov. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J]. Nat. Photonics, 2008, 2(8): 496~500

[25] Y. F. Xiao, C. L. Zou, B. B. Li et al.. High-Q exterior whispering-gallery modes in a metal-coated microresonator[J]. Phys. Rev. Lett., 2010, 105(15): 153902

[26] E. J. R. Vesseur, F. J. García de Abajo, A. Polman. Modal decomposition of surface-plasmon whispering gallery resonators[J]. Nano Lett., 2009, 9(9): 3147~3150

[27] 吕强, 黄德修, 元秀华 等. 不同波长下表面等离子体共振传感器的灵敏度[J]. 中国激光, 2007, 34(7): 972~976

    Lü Qiang, Huang Dexiu, Yuan Xiuhua et al.. Sensitivity of surface plasma resonance sensor for different wavelengths[J] . Chinese J. Lasers, 2007, 34(7): 972~976

卢启景, 吴根柱, 陈达如, 刘军, 刘旭安, 周沛. 表面等离子体激元微盘的优化设计及应用[J]. 光学学报, 2012, 32(7): 0714002. Lu Qijing, Wu Genzhu, Chen Daru, Liu Jun, Liu Xu′an, Zhou Pei. Optimal Design and Application of Surface Plasmon Polaritions Microdisk[J]. Acta Optica Sinica, 2012, 32(7): 0714002.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!