Photonics Research, 2019, 7 (6): 06000647, Published Online: May. 17, 2019   

Mode splitting revealed by Fano interference Download: 537次

Author Affiliations
1 State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
Copy Citation Text

Yue Wang, Hongchun Zhao, Yancheng Li, Fengfeng Shu, Mingbo Chi, Yang Xu, Yihui Wu. Mode splitting revealed by Fano interference[J]. Photonics Research, 2019, 7(6): 06000647.

References

[1] JiangX.-F.QaviA. J.HuangS. H.YangL., “Whispering gallery microsensors: a review,” arXiv: 1805.00062 (2018).

[2] S. Subramanian, H. Y. Wu, T. Constant, J. Xavier, F. Vollmer. Label-free optical single-molecule micro-and nanosensors. Adv. Mater., 2018, 30: 1801246.

[3] G. P. Lin, A. Coillet, Y. K. Chembo. Nonlinear photonics with high-Q whispering-gallery-mode resonators. Adv. Opt. Photon., 2017, 9: 828-890.

[4] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 2014, 86: 1391-1452.

[5] A. Pasquazi, M. Peccianti, L. Razzari, D. J. Mosset, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X.-X. Xue, A. M. Weiner, R. Morandotti. Micro-combs: a novel generation of optical sources. Phys. Rep., 2018, 729: 1-81.

[6] D. S. Weiss, V. Sandoghdar, J. Hare, V. S. Lefevre, J. M. Raimond, S. Haroche. Splitting of high-Q Mie modes induced by light backscattering in silica microspheres. Opt. Lett., 1995, 20: 1835-1837.

[7] A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, V. Sandoghdar. Controlled coupling of counterpropagating whispering-gallery modes by a single Rayleigh scatterer: a classical problem in a quantum optical light. Phys. Rev. Lett., 2007, 99: 173603.

[8] J. G. Zhu, Ş. K. Özdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, L. Yang. On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photonics, 2009, 4: 46-49.

[9] B. Stern, X. C. Ji, A. Dutt, M. Lipson. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt. Lett., 2017, 42: 4541-4544.

[10] A. Li, W. Bogaerts. Backcoupling manipulation in silicon ring resonators. Photon. Res., 2018, 6: 620-629.

[11] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 2017, 548: 192-196.

[12] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points. Nature, 2017, 548: 187-191.

[13] H. Jing, H. Lü, S. K. Özdemir, T. Carmon, F. Nori. Nanoparticle sensing with a spinning resonator. Optica, 2018, 5: 1424-1430.

[14] W. Chen, J. Zhang, B. Peng, Ş. K. Özdemir, X. D. Fan, L. Yang. Parity-time-symmetric whispering-gallery mode nanoparticle sensor. Photon. Res., 2018, 6: A23-A30.

[15] L. He, S. K. Ozdemir, J. Zhu, W. Kim, L. Yang. Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol., 2011, 6: 428-432.

[16] B.-B. Li, W. R. Clements, X.-C. Yu, K. Shi, Q. Gong, Y.-F. Xiao. Single nanoparticle detection using split-mode microcavity Raman lasers. Proc. Natl. Acad. Sci. USA, 2014, 111: 14657-14662.

[17] S. K. Ozdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, L. Yang. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc. Natl. Acad. Sci. USA, 2014, 111: E3836-E3844.

[18] M. Y. Ye, M. X. Shen, X. M. Lin. Ringing phenomenon based measurement of weak mode-coupling strength in an optical microresonator. Sci. Rep., 2017, 7: 17412.

[19] J. Knittel, T. G. McRae, K. H. Lee, W. P. Bowen. Interferometric detection of mode splitting for whispering gallery mode biosensors. Appl. Phys. Lett., 2010, 97: 123704.

[20] L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv. Mater., 2013, 25: 5616-5620.

[21] M. F. Limonov, M. V. Rybin, A. N. Poddubny, Y. S. Kivshar. Fano resonances in photonics. Nat. Photonics, 2017, 11: 543-554.

[22] H. J. Goldwyn, K. C. Smith, J. A. Busche, D. J. Masiello. Mislocalization in plasmon-enhanced single-molecule fluorescence microscopy as a dynamical Young’s interferometer. ACS Photon., 2018, 5: 3141-3151.

[23] S. Simoncelli, Y. Li, E. Cortés, S. A. Maier. Imaging plasmon hybridization of Fano resonances viahot-electron-mediated absorption mapping. Nano Lett., 2018, 18: 3400-3406.

[24] N. Caselli, F. Intonti, F. L. China, F. Riboli, A. Gerardino, W. Bao, A. W. Bargioni, L. H. Li, E. H. Linfield, F. Pagliano, A. Fiore, M. Gurioli. Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes. Light: Sci. Appl., 2015, 4: e326.

[25] N. Caselli, F. Intonti, F. L. China, F. Biccari, F. Riboli, A. Gerardino, L. H. Li, E. H. Linfield, F. Pagliano, A. Fiore, M. Gurioli. Generalized Fano lineshapes reveal exceptional points in photonic molecules. Nat. Commun., 2018, 9: 396.

[26] P. Willke, W. Paul, F. D. Natterer, K. Yang, Y. Bae, T. Choi, J. Fernández-Rossier, A. J. Heinrich, C. P. Lutz. Probing quantum coherence in single-atom electron spin resonance. Sci. Adv., 2018, 4: eaaq1543.

[27] J. Knittel, J. D. Swaim, D. L. McAuslan, G. A. Brawley, W. P. Bowen. Back-scatter based whispering gallery mode sensing. Sci. Rep., 2013, 3: 2974.

[28] X. Yi, Y. F. Xiao, Y. C. Liu, B. B. Li, Y. L. Chen, Y. Li, Q. H. Gong. Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator. Phys. Rev. A, 2011, 83: 023803.

[29] Y. L. Xu, S. J. Tang, X. C. Yu, Y. L. Chen, D. Q. Yang, Q. H. Gong, Y. F. Xiao. Mode splitting induced by an arbitrarily shaped Rayleigh scatterer in a whispering-gallery microcavity. Phys. Rev. A, 2018, 97: 063828.

[30] Y. C. Liu, B. B. Li, Y. F. Xiao. Electromagnetically induced transparency in optical microcavities. Nanophotonics, 2017, 6: 789-811.

[31] K. Zhang, Y. Wang, Y. H. Wu. Enhanced Fano resonance in a non-adiabatic tapered fiber coupled with a microresonator. Opt. Lett., 2017, 42: 2956-2959.

[32] X. W. Liu, A. W. Bruch, Z. Gong, J. J. Lu, J. B. Surya, L. Zhang, J. X. Wang, J. C. Yan, H. X. Tang. Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform. Optica, 2018, 5: 1279-1282.

[33] L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. H. Gong, M. Lončar, Y. F. Xiao. High-Q chaotic lithium niobate microdisk cavity. Opt. Lett., 2018, 43: 2917-2920.

[34] G. Lin, R. Henriet, A. Coillet, M. Jacquot, L. Furfaro, G. Cibiel, L. Larger, Y. K. Chembo. Dependence of quality factor on surface roughness in crystalline whispering-gallery mode resonators. Opt. Lett., 2018, 43: 495-498.

[35] A. E. Shitikov, I. A. Bilenko, N. M. Kondratiev, V. E. Lobanov, A. Markosyan, M. L. Gorodetsky. Billion Q-factor in silicon WGM resonators. Optica, 2018, 5: 1525-1528.

[36] R. B. Wu, Y. Zheng, Q. M. Chen, Y. X. Liu. Synthesizing exceptional points with three resonators. Phys. Rev. A, 2018, 98: 033817.

[37] R. J. Thompson, G. Rempe, H. J. Kimble. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett., 1992, 68: 1132-1135.

[38] M. Rossi, N. Kralj, S. Zippilli, R. Natali, A. Borrielli, G. Pandraud, E. Serra, G. Di Giuseppe, D. Vitali. Normal-mode splitting in a weakly coupled optomechanical system. Phys. Rev. Lett., 2018, 120: 073601.

Yue Wang, Hongchun Zhao, Yancheng Li, Fengfeng Shu, Mingbo Chi, Yang Xu, Yihui Wu. Mode splitting revealed by Fano interference[J]. Photonics Research, 2019, 7(6): 06000647.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!