红外, 2016, 37 (4): 38, 网络出版: 2016-06-08   

用波段比值参数提升水体悬浮颗粒物浓度反演模型稳健性的分析

Analysis of Robustness Improvement of SPM Inversion Models Using Band Ratio Parameters
作者单位
华东师范大学河口海岸国家重点实验室,上海 200062
摘要
为了得到更加稳健的水体悬浮颗粒物(Suspended Particular Matters, SPM)的反演模型,减少建模数据误差对算法精度的影响,将单波段和对应波段比值的六种经验模型和半经验、半分析模型分别应用于长江口高浊度水域不同航次不同测量仪器测得的实测数据集中,分析了波段比值参数对于提高SPM反演模型稳健性和稳定性的作用。结果表明,采用波段比值参数的模型的精度都远高于相应的单波段模型。在2014年5月和2014年12月航次的数据集中,有的单波段模型失效,总体的最高精度不超过0.5。而相对应的波段比值的建模精度都在0.8左右。另外,将各模型应用于Landsat 8卫星的OLI传感器的遥感数据时,同样,波段比值模型的反演精度高于单波段模型。结果证明,在高浊度的水体中反演SPM浓度时,波段比值遥感参数的应用可以加强反演模型的稳健性。
Abstract
To obtain more robust inversion models of Suspended Particular Matters (SPM) in water and reduce the influence of the modeling data error on the accuracy of an algorithm, six empirical, semi-empirical and semi-analysis models of single-band and corresponding band ratio parameters are used in the data sets measured in high turbidity water at Yangtze River estuary by different instruments in different cruises. The role of band ratio parameters in robustness improvement of the SPM inversion model is analyzed. The results show that the models using band ratio parameters have much higher accuracy than the corresponding single-band model. In the data sets obtained in May and December 2014, some single-band models are invalid with the highest accuracy no more than 0.5. However, the modeling accuracy of the corresponding band ratio models is about 0.8. In addition, when the models are used in the OLI images from Landsat 8, the validation accuracy of band ratio models is higher than that of the single-band models as well. The results confirm that the use of the band ratio parameters can enhance the robustness of inversion models when the SPM concentration is inverted in high turbidity water.
参考文献

[1] Zhang Y L, Zhang B, Ma R H, et al. Optically Active Substances and Their Contributions to the Underwater Light Climate in Lake Taihu, a Large Shallow Lake in China [J].Fundamental and Applied Limnology, 2007, 170: 11-19.

[2] Liu X H, Zhang Y L, Yin Y, et al. Wind and Submerged Aquatic Vegetation Influence Bio-optical Properties in Large Shallow Lake Taihu, China [J].Journal of Geophysical Research: Biogeosciences, 2013, 118: 713-727.

[3] Miller R L, McKee B A. Using MODIS Terra 250 m Imagery to Map Concentrations of Total Suspended Matter in Coastal Waters [J].Remote Sensing of Environment, 2004, 93: 259-266.

[4] Neukermans G, Loisel H, Meriaux, et al. In Situ Variability of Mass-specific Beam Attenuation and Backscattering of Marine Particles with Respect to Particle Size, Density, and Composition [J].Limnology and Oceanography, 2012, 57(1): 124-144.

[5] Pozdnyakov D, Shuchman R, Korosov A, et al. Operational Algorithm for the Retrieval of Water Quality in the Great Lakes [J].Remote Sensing of Environment, 2005, 97: 352-370.

[6] Curran P J, Novo E M M. The Relationship between Suspended Sediment Concentration and Remotely Sensed Spectral Radiance: A Review [J].Journal of Coastal Research, 1988, 4(3): 351-368.

[7] Chen J, Quan W, Cui T, et al. Estimation of Total Suspended Matter Concentration from MODIS Data Using a Neural Network Model in the China Eastern Coastal Zone [J].Est Coast Shelf Sci, 2015, 155: 104-113.

[8] Doxaran D, Ehn J, Belanger S, et al. Optical Characterization of Suspended Particles in the Mackenzie River Plume (Canadian Arctic Ocean) and Implications for Ocean Colour Remote Sensing [J].Biogeosciences, 2012, 9: 3213-3229.

[9] Sravanthi N, Ramana I V, Yunus A P, et al. An Algorithm for Estimating Suspended Sediment Concentrations in the Coastal Waters of India Using Remotely Sensed Reflectance and its Application to Coastal Environments [J].Int J Envir Res, 2013, 7(4): 841-850.

[10] He X, Bai Y, Pan D, et al. Using Geostationary Satellite Ocean Color Data to Map the Diurnal Dynamics of Suspended Particulate Matter in Coastal Waters [J].Remote Sensing of Environment, 2013, 133: 225-239.

[11] Feng L, Hu C, Chen X, et al. Influence of the Three Gorges Dam on Total Suspended Matters in the Yangtze Estuary and its Adjacent Coastal Waters: Observations from MODIS [J].Remote Sensing of Environment, 2014, 140: 779-788.

[12] Doxaran D, Froidefond J-M, Castaing P. Remote-sensing Reflectance of Turbid Sediment-dominated Waters Reduction of Sediment Type Variations and Changing Illumination Conditions Effects by Use of Reflectance Ratios [J].Appl Opt, 2003, 42(15): 2623-2634.

[13] 唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析I: 水面以上测量法 [J]. 遥感学报, 2004, 8(1): 37-44.

[14] Mobley C D. Estimation of the Remote-sensing Reflectance from Above Surface Measurements [J].Appl Opt, 1999, 38(36): 7442-7255.

[15] Schott J R, Gerace A, Pahlevan N. The Landsat Data Continuity Mission (LDCM): Landsat 8 Not Your Fathers Landsat [EB/OL]. http://ww-w.ssec.wisc.edu/meetings/ciw/Workshop_Presentati-ons/Wednesday_6_20_2012/1_Remote_Sensing_Produ-cts_Missions/ignite_mission_panel/4_Schott_water_w-orkshop_2012.pdf, 2012.

[16] Nechad B, Ruddick K G, Park Y. Calibration and Validation of a Generic Multisensor Algorithm for Mapping of Total Suspended Matter in Turbid Waters [J].Remote Sensing of Environment, 2010, 114(4): 854-866.

[17] Shen F, Verhoef W, Zhou Y, et al. Satellite Estimates of Wide-Range Suspended Sediment Concentrations in Changjiang (Yangtze) Estuary Using MERIS Data [J].Estuaries and Coasts, 2010, 33(6): 1420-1429.

陈晓东, 蒋雪中. 用波段比值参数提升水体悬浮颗粒物浓度反演模型稳健性的分析[J]. 红外, 2016, 37(4): 38. CHEN Xiao-dong, JIANG Xue-zhong. Analysis of Robustness Improvement of SPM Inversion Models Using Band Ratio Parameters[J]. INFRARED, 2016, 37(4): 38.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!