Frontiers of Optoelectronics, 2010, 3 (2): 190, 网络出版: 2012-09-20  

Limit of accuracy in laser fabrication with metal powder

Limit of accuracy in laser fabrication with metal powder
作者单位
Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
摘要
Abstract
The research presented in this paper focuses on the laser-powder interaction. Through the experiment with metal powder in micrometers, we found that, in an invariable laser power density, the thickness of the final fabricated thin wall was similar to the geometrical dimension of the powder line, but could be much greater than the laser focus spot, even greater than two orders of magnitude. Furthermore, this paper showed that, the unmelted and semi-fused particles were concentrated. Thus, in this paper, combining the optical scattering theory with capillarity and infiltration theory pointed out the inducement effect of laser and the self-melting of powder. Based on the experimental phenomena and theory, we get our own ideas on the laser micro-fabrication.
参考文献

[1] Greul M, Pintat T, Greulich M. Rapid prototyping of functional metallic parts. Computers in Industry, 1995, 28(1): 23-28

[2] Wu G H, Langrana N A, Sadanji R, Danforth S. Solid freeform fabrication of metal components using fused deposition of metals. Materials and Design, 2002, 23(1): 97-105

[3] Das S, Wohlert M, Beaman J J, Bourell D L. Producing metal parts with selective laser sintering/hot isostatic pressing. JOM Journal of The Minerals, Metals and Materials Society, 1998, 50(12): 17-20

[4] Exner H, Regenfuss P, Hartwig L, Kl tzer S, Ebert R. Selective laser micro sintering with a novel process. Proceedings of SPIE, 2003, 5063: 145-151

[5] Casalino G, De Filippis L A C, Ludovico A D, Tricarico L. An investigation of rapid prototyping of sand casting molds by selective laser sintering. Journal of Laser Applications, 2002, 14(2): 100-106

[6] Ning Y, Wong Y S, Fuh J Y H, Loh H T. An approach to minimize build errors in direct metal laser sintering. IEEE Transactions on Automation Science Engineering, 2006, 3(1): 73-80

[7] Kumar S, Kruth J P. Effect of bronze infiltration into laser sintered metallic parts. Materials and Design, 2007, 28(2): 400-407

[8] Lanzetta M, Sachs E. Improved surface finish in 3D printing. Rapid Prototyping Journal, 2003, 9(3): 157-166

[9] Sercombe T B, Schaffer G B. Rapid manufacturing of aluminum components. Science, 2003, 301(5637): 1225-1227

[10] Liu J H, Shi Y S, Lu Z L, Xu Y, Chen K H, Huang S H. Manufacturing metal parts via indirect SLS of composite elemental powders. Materials Science and Engineering A, 2007, 444(1-2): 146-152

[11] Dück J, Niebling F, Neeβe T, Otto A. Infiltration as post-processing of laser sintered metal parts. Powder Technology, 2004, 145(1): 62-68

[12] Wu C M L, Han G W. Synthesis of an Al2O3/Al co-continuous composite by reactive melt infiltration. Materials Characterization, 2007, 58(5): 416-422

[13] Maeda K, Childs T H C. Laser sintering (SLS) of hard metal powders for abrasion resistant coatings. Journal of Materials Processing Technology, 2004, 149(1-3): 609-615

[14] Kruth J P, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M. Binding mechanisms in selective laser sintering and selective laser melting. Rapid prototyping Journal, 2005, 11(1): 26-36

[15] Kruth J P, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B. Selective laser melting of iron-based powder. Journal of Materials Processing Technology, 2004, 149(1-3): 616-622

[16] Brandner J J, Hansjosten E, Anurjew E, Pfleging W, Schubert K. Microstructure devices generation by selective laser melting. Proceedings of SPIE, 2007, 6459: 645911

[17] Sun M, Lü L, Fuh J Y H. Microstructure and properties of Fe-base alloy fabricated using selective laser melting. Proceedings of SPIE, 2002, 4426: 139-142

[18] Santos E, Osakada K, Shiomi M, Morita M, Abe F. Fabrication of titanium dental implants by selective laser melting. Proceedings of SPIE, 2004, 5662: 268-273

[19] Lewis G K, Schlienger E. Practical considerations and capabilities for laser assisted direct metal deposition. Materials and Design, 2000, 21(4): 417-423

[20] Vasinonta A, Beuth J L, Griffith M. Process maps for predicting residual stress and melt pool size in the laser-based fabrication of thin-walled structures. Journal of Manufacturing Science and Engineering, 2007, 129(1): 101-109

[21] Milewski J O, Lewis G K, Thoma D J, Keel G I, Nemec R B, Reinert R A. Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition. Journal of Materials Processing Technology, 1998, 75(1-3): 165-172

[22] SyedWU H, Pinkerton A J, Lin L. Simultaneous wire- and powderfeed direct metal deposition: an investigation of the process characteristics and comparison with single-feed methods. Journal of Laser Applications, 2006, 18(1): 65-72

[23] Qi H, Mazumder J, Green L, Herrit G. Laser beam analysis in direct metal deposition process. Journal of Laser Applications, 2005, 17(3): 136-143

[24] He X, Mazumder J. Transport phenomena during direct metal deposition. Journal of Applied Physics, 2007, 101(5): 053113

[25] Alimardani M, Toyserkani E, Huissoon J P. Three-dimensional numerical approach for geometrical prediction of multilayer laser solid freeform fabrication process. Journal of Laser Applications, 2007, 19(1): 14-25

[26] Wang X B, Chen J M, Jiao D M, Wu Q, Li G, Zuo T C. The beam characteristic of Nd:YAG frequency doubling in a KTP crystal by the resonant external ring cavity. Proceedings of SPIE, 2004, 5646: 636-642

[27] Mie G. Beitr ge zur optik trüber medien, speziell kolloidaler metall sungen. Annalen Der Physik, 1908, 25: 377-445

[28] Penndorf R. Tables of the refractive index for standard air and the rayleigh scattering coefficient for the spectral region between 0.2 and 20.0 μ and their application to atmospheric optics. Journal of the Optical Society of America, 1957, 47(2): 176-182

[29] Sudiarta I W, Chylek P. Mie-scattering formalism for spherical particles embedded in an absorbing medium. Journal of the Optical Society of America A, 2001, 18(6): 1275-1278

[30] Du H. Mie-scattering calculation. Applied Optics, 2004, 43(9): 1951-1956

[31] Yang W. Improved recursive algorithm for light scattering by a multilayered sphere. Applied Optics, 2003, 42(9): 1710-1720

[32] Siu G G, Cheng L. Mie solution of light scattering from spheres of radii up to 80l with digit-array method. Journal of the Optical Society of America B, 2002, 19(8): 1922-1929

[33] Stout B, Nevière M, Popov E. T matrix of the homogeneous anisotropic sphere: applications to orientation-averaged resonant scattering. Journal of the Optical Society of America A, 2007, 24(4): 1120-1130

[34] Gusarov A V, Kruth J P. Modelling of radiation transfer in metallic powders at laser treatment. International Journal of Heat and Mass Transfer, 2005, 48(16): 3423-3434

[35] Kernan B D, Sachs E M, Allen S M, Sachs C, Raffenbeul L, Pettavino A, Lorenz A. Homogenous steel infiltration. Metallurgical and Materials Transactions A, 2005, 36(10): 2815-2827

[36] Qin Z K, Yu J K, Zhang X Y. Infiltration kinetics of pressureless infiltration in SiCp/Al composites. Transactions of Nonferrous Metals Society of China, 2005, 15(2): 371-374

[37] Sohn H, Yang D Y. Drop-on-demand deposition of superheated metal droplets for selective infiltration manufacturing. Materials Science and Engineering A, 2005, 392(1-2): 415-421

[38] Ambrosi D. Infiltration through deformable porous media. Zeitschrift für Angewandte Mathematik und Mechanik, 2002, 82(2): 115-124

Xubao WANG, Tiechuan ZUO. Limit of accuracy in laser fabrication with metal powder[J]. Frontiers of Optoelectronics, 2010, 3(2): 190. Xubao WANG, Tiechuan ZUO. Limit of accuracy in laser fabrication with metal powder[J]. Frontiers of Optoelectronics, 2010, 3(2): 190.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!